AD писал(а):
Подумайте о том, что такое "характеристическая функция" подмножества, и как она может быть полезна. После этого Вы сможете осознать моё предыдущее сообщение.
Еще Вам почти наверняка пригодится теорема Кантора-Бернштейна. Тоже придётся вспомнить и осознать. Без неё никуда.
Всё кроме этих двух моментов вспомнил. Не могли бы кратко напомнить о чём там речь?
Вот Вы говорите, что функции это множества. Я так понимаю, что речь идёт о бинарном отношении т.е. подмножестве Декартого произведения, обладающего определёнными свойствами. Поэтому функцию можно рассматривать как множество упорядоченых пар
вида f= <x,y> , где выполнены следующие условия, а именно: для любого элемента из области определения бинарного отношения существует только один элемент из области значения бинарного отношения. С самого начала, я хотел действовать так: пусть например
даны две различные функции:
1.

2.

так как функции различны, то они различны хотя-бы в одной паре. т.е. для некоторого k
верно,что

. Значит, в этом сотоит уникальная специфика этих функций.
Тогда я собирался присвоить каждой такой функции, некоторый номер например

.
Но потом я быстро понял, что такой номер не будет уникальным - существует много функций
с одним и тем же номером. Поэтому биекции не получается. На этом и застрял.
Добавлено спустя 7 минут:Really писал(а):
Не могу нечего заценить. У меня такая проблема: я вообще не могу понять как можно нумеровать такие обьекты как функции.
Нумеровать в данном случае не обязательно. А вот установить биекцию между всеми отображениями

и множеством

проще
простого.
Я закончил университет 7 лет назад. Я уже ничего не помню. Что такое

? Множество двоичных последовательностей? Нельзя ли проще объяснить?
Добавлено спустя 5 минут 28 секунд:
Господа,если не желаете написать решение, то подскажите пожалуйста учебник, где можно прочитать именно это доказательство. Мне нужно понять саму идею как это реализуется.
Спасибо.