2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Исследовать ряд на сходимость
Сообщение25.03.2011, 02:29 


25/03/11
3
Пожалуйста, помогите разобраться! Еще один ряд, который остается для меня загадкой. :(

$$\sum_{n=1}^\infty {\frac{1}{{3^{\sqrt n}}*{\sqrt n}}}$$

 Профиль  
                  
 
 
Сообщение25.03.2011, 03:47 


19/01/06
179
выбрасываем $\sqrt{n}$ из знаменателя и получив оценку сверху $\frac{1}{3^{\sqrt{n}}\cdot\sqrt{n}}<\frac{1}{3^{\sqrt{n}}}$ при n>1, к ней применяем признак Раабе

 Профиль  
                  
 
 Re: Исследовать ряд на сходимость
Сообщение25.03.2011, 04:44 


19/01/11
718
можно использовать интегральный признак Коши.....
$2\int\limits_{1}^{\infty}\frac{d(\sqrt x)}{3^{\sqrt x}}$

-- Пт мар 25, 2011 04:46:42 --

5tar в месте * используете '\cdot' , а то как то :?:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group