Здравствуйте.
Помогите пожалуйста разобраться с понятием инволютивности векторных полей. Использую литературу [1,2].
Подскажите пожалуйста ответы несколько возникших вопросов.
В [1] дано следующее определение инволютивности: Множество векторных полей

инволютивно, если существуют такие скалярные поля

, что
![$ \left[ \mathbf{X}_i,\mathbf{X}_j \right] = \sum\limits_{k=1}^m\alpha_{ijk}(\mathbf{x})\mathbf{X}_k(\mathbf{x})$ $ \left[ \mathbf{X}_i,\mathbf{X}_j \right] = \sum\limits_{k=1}^m\alpha_{ijk}(\mathbf{x})\mathbf{X}_k(\mathbf{x})$](https://dxdy-02.korotkov.co.uk/f/1/a/b/1ab9593ab1f7c3e8a90a361b18d8106482.png)
.
Здесь
![$ \left[\cdot,\cdot \right]$ $ \left[\cdot,\cdot \right]$](https://dxdy-04.korotkov.co.uk/f/3/7/a/37a3bb666306f47ef394992874c1ae8482.png)
– скобки Ли.
Правильно ли я записываю это выражение в развернутом виде. Например имеем

векторных полей
![$ \mathbf{X}_1(\mathbf{x})=\left[ \begin{array}{c} f_{11}(\mathbf{x}) \\ f_{12}(\mathbf{x}) \\\ \vdots \\\ f_{1n}(\mathbf{x}) \end{array} \right]$ $ \mathbf{X}_1(\mathbf{x})=\left[ \begin{array}{c} f_{11}(\mathbf{x}) \\ f_{12}(\mathbf{x}) \\\ \vdots \\\ f_{1n}(\mathbf{x}) \end{array} \right]$](https://dxdy-01.korotkov.co.uk/f/4/5/3/453d51db13292528b72fbb60da534f7982.png)
;
![$ \mathbf{X}_2(\mathbf{x})=\left[ \begin{array}{c} f_{21}(x) \\ f_{22}(\mathbf{x}) \\\ \vdots \\\ f_{2n}(\mathbf{x}) \end{array} \right]$ $ \mathbf{X}_2(\mathbf{x})=\left[ \begin{array}{c} f_{21}(x) \\ f_{22}(\mathbf{x}) \\\ \vdots \\\ f_{2n}(\mathbf{x}) \end{array} \right]$](https://dxdy-04.korotkov.co.uk/f/7/4/0/740e5d7701f48da64934c79a9bf721d482.png)
; …
![$ \mathbf{X}_m(\mathbf{x})=\left[ \begin{array}{c} f_{m1}(\mathbf{x}) \\ f_{m2}(\mathbf{x}) \\\ \vdots \\\ f_{mn}(\mathbf{x}) \end{array} \right]$ $ \mathbf{X}_m(\mathbf{x})=\left[ \begin{array}{c} f_{m1}(\mathbf{x}) \\ f_{m2}(\mathbf{x}) \\\ \vdots \\\ f_{mn}(\mathbf{x}) \end{array} \right]$](https://dxdy-04.korotkov.co.uk/f/7/b/6/7b63ab65ec6535ed1133d78c1b40054182.png)
И, например, для векторных полей

и

должны существовать такие

функций

, что векторное поле
![$\left[ \mathbf{X}_1,\mathbf{X}_2 \right] =\dfrac{\partial \mathbf{X}_2}{\partial \mathbf{x}}\mathbf{X}_1-\dfrac{\partial \mathbf{X}_1}{\partial \mathbf{x}}\mathbf{X}_2=\left[ \begin{array}{c} \alpha_{121}(\mathbf{x})f_{11}(\mathbf{x})+\alpha_{122}(\mathbf{x})f_{21}(\mathbf{x})+\ldots+\alpha_{12m}(\mathbf{x})f_{m1}(\mathbf{x}) \\ \alpha_{121}(\mathbf{x})f_{12}(\mathbf{x})+\alpha_{122}(\mathbf{x})f_{22}(\mathbf{x})+\ldots+\alpha_{12m}(\mathbf{x})f_{m2}(\mathbf{x}) \\\ \vdots \\\ \alpha_{121}(\mathbf{x})f_{1n}(\mathbf{x})+\alpha_{122}(\mathbf{x})f_{2n}(\mathbf{x})+\ldots+\alpha_{12m}(\mathbf{x})f_{mn}(\mathbf{x}) \end{array} \right]$ $\left[ \mathbf{X}_1,\mathbf{X}_2 \right] =\dfrac{\partial \mathbf{X}_2}{\partial \mathbf{x}}\mathbf{X}_1-\dfrac{\partial \mathbf{X}_1}{\partial \mathbf{x}}\mathbf{X}_2=\left[ \begin{array}{c} \alpha_{121}(\mathbf{x})f_{11}(\mathbf{x})+\alpha_{122}(\mathbf{x})f_{21}(\mathbf{x})+\ldots+\alpha_{12m}(\mathbf{x})f_{m1}(\mathbf{x}) \\ \alpha_{121}(\mathbf{x})f_{12}(\mathbf{x})+\alpha_{122}(\mathbf{x})f_{22}(\mathbf{x})+\ldots+\alpha_{12m}(\mathbf{x})f_{m2}(\mathbf{x}) \\\ \vdots \\\ \alpha_{121}(\mathbf{x})f_{1n}(\mathbf{x})+\alpha_{122}(\mathbf{x})f_{2n}(\mathbf{x})+\ldots+\alpha_{12m}(\mathbf{x})f_{mn}(\mathbf{x}) \end{array} \right]$](https://dxdy-04.korotkov.co.uk/f/b/f/c/bfc0ce34e9c5e80d30f897cfde5d913c82.png)
также является одним из полей множества

?
Правильно ли я понял, что множество в целом будет инволютивным, если такие функции есть для
каждой пары полей?
[1] Методы классической и современной ТАУ в 5-и тт. Т.5. / Под ред К.А. Пупкова, Н.Д. Егупова.
[2] Краснощёченко В.И., Крищенко А.П. Нелинейные системы: геометрические методы анализа и синтеза