Пожалуй, тут проще после предположения от противного разложить по Тейлору в окрестности точки
и оценить сверху. А дальше да, подставлять границы отрезка.
Кстати, можно обобщить задачу: есть произвольный отрезок, произвольные значения на границах и минимальное значение внутри отрезка, оценить снизу максимум второй производной. У меня получилось
где
— точка, где достигается минимум. Еще можно, зная максимум функции на отрезке, оценить сверху минимум второй производной. Интересно, какой смысл имеют слагаемые в получившейся формуле? Можно ли ее как-то проинтерпретировать геометрически/механически?