Я уже ранее засветился как тот самый "гегемон":
Когда я работал на строительстве одного автобана, и понадобилось рассчитывать т.н. переходную кривую, ...
Прораб тогда попросил меня написать решение подробно
(Вы,
e7e5, в той теме тоже участвовали).
Была также тема об
аппроксимации клотоидами.
Судя по Вашему "Ф" в слове кло(Ф/Т)оида, книгу Савёлова Вы раздобыли. Но мне кажется, что "Т" более общепринято.
Когда ваша траектория имеет резкий поворот (типа

), это в механической трактовке называется "жёсткий удар". Здесь фукция

(угол наклона касательной от длины дуги) претерпевает скачок. Случай на порядок более гладкий (о котором выше написал
Someone), когда траектория гладкая, но скачок претерпевает кривизна

, называли "мягким" ударом. При строительстве автобанов их тоже стараются избегать (понятно, что на самом автобане таких проблем практически не возникает; чаще они возникают при переходе с одной дороги на другую). Хоть я и давно интересуюсь этим, но лишь месяц назад услышал, как заценили велосипедисты новый трек, конструкторы которого позаботились о непрерывности кривизны (не в Крылатском ли? точно не помню, про что именно мне тогда рассказывал один любитель профилей крыл самолётов...).
И об использовании кубических кривых, и о клотоидах в роли
переходных кривых Вы можете прочитать у Савёлова. Но сейчас модно, чтоб не было ещё и экстремумов кривизны (или свести их количество к минимуму). Т.е. чтобы кривизна была монотонна (ну, умные физики легко объяснят и это пожелание). В этом смысле клотоиды плохо помогают. С их помощью вы можете обеспечить

-гладкость, но гладкость по кривизне (

) они не обеспечивают. Какая получится, такая и получится. И вряд ли вкупе (типа по всему "кусочно-клотоидальному" сплайну) монотонная.
Мне удалось построить кривые, обеспечивающие

-гладкое сопряжение с монотонной кривизной. Одно решение --- двойная логарифмическая спираль (термин из книг Маркушевича по ТФКП, гидромеханические главы), что для дорог не особо годится: не любят конструкторы трансцендентных кривых; подавай им Безье и нурбсы. Второе --- рациональная кривая 4-й степени, что в нурбсовость вполне вписывается. В ряде случаев можно и до 3-й степени опуститься, но здесь я малость сдох. Надоело. Ибо... часто это всё ерунда, делается ради статей и диссеров; иногда вполне можно было бы позволить себе маленький экстремчик кривизны, и никто бы его на дороге не заметил. Как, например, тот неизбежный экстремум, который возникает при аппроксимации дуги окружности кубической кривой Безье.
(Оффтоп)
Вообще-то тот любитель профилей крыл самолётов жаловался, что в точках разрыва кривизны у него что-то там завихривается и мешает летать... Так что я, возможно, скоро поверю, что моё увлечение --- не такая уж ерунда, как мне пока всё же ещё кажется...
-- 08 фев 2011, 01:10 -- Но сейчас модно чтоб ещё и не было экстремумов кривизны. Т.е. чтобы кривизна была монотонна
У спирали Корню, о которой Вы,
e7e5, спрашиваете, кривизна бесконечно монотонна. Потрясающе монотонна. Восхитительно монотонна. Спираль Корню --- апофеоз монотонности кривизны.