2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Исследовать на сходимость последовательность
Сообщение13.01.2011, 22:49 


13/01/11
27
$x_{n} =1+\frac{1} {\sqrt3}+\frac{1} {\sqrt5}+...+\frac{1} {\sqrt{(n+1)}}$
С самого начала у меня с последовательностями не заладилось.Столкнулся и не пойму,на вид не сложно,а идей нет.Я понимаю что это элементарно,но все же будьте снисходительны.
Здесь надо использовать критерий Коши.Какое ограничение на корень из нечетного числа?Интуитивно кажется,что она расходящаяся.
И еще огромная просьба: посоветуйте книгу какую-нибудь с задачами на последовательность и Большим количеством примеров для более лучшего восприятия.

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение13.01.2011, 22:54 
Аватара пользователя


30/09/10
119
Ну, видно сразу,что она больше гармонического ряда - значит, увы!

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение13.01.2011, 22:57 
Заслуженный участник
Аватара пользователя


11/12/05
10057
Ifreeman в сообщении #399565 писал(а):
$x_{n} =1+\frac{1} {\sqrt3}+\frac{1} {\sqrt5}+...+\frac{1} {\sqrt{(n+1)}}$
С самого начала у меня с последовательностями не заладилось.Столкнулся и не пойму,на вид не сложно,а идей нет.Я понимаю что это элементарно,но все же будьте снисходительны.
Здесь надо использовать критерий Коши.

Правильно. Покажите как вы это делаете.
Ifreeman в сообщении #399565 писал(а):
Какое ограничение на корень из нечетного числа?

Ээээ не понял.

Ifreeman в сообщении #399565 писал(а):
Интуитивно кажется,что она расходящаяся.

Правильно, она расходящаяся
Ifreeman в сообщении #399565 писал(а):
И еще огромная просьба: посоветуйте книгу какую-нибудь с задачами на последовательность и Большим количеством примеров для более лучшего восприятия.

Демидович и Антидемидович

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение13.01.2011, 23:00 
Злостный тролль-клон Дмитрий Муродьянц. Студент 1 курса МГТУ им. Баумана. Кафедра физики


10/01/11
58
Цитата:
Антидемидович
:mrgreen: :mrgreen: :mrgreen:

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение13.01.2011, 23:00 
Заслуженный участник
Аватара пользователя


11/12/05
10057
Day в сообщении #399566 писал(а):
Ну, видно сразу,что она больше гармонического ряда - значит, увы!

Не всем первокурсникам это видно. Особенно тем, кто начал с последовательностей и до рядов еще не дошел. :D

-- Чт янв 13, 2011 14:02:47 --

Tarinal в сообщении #399571 писал(а):
Цитата:
Антидемидович
:mrgreen: :mrgreen: :mrgreen:

Я имел в виду Боярчук/Ляшко и др. :D

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение13.01.2011, 23:14 


26/12/08
1813
Лейден
1. покажите что расходится последовательность
$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...
$$

2. покажите, что последовательность
$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...
$$
больше чем из п.1

3. покажите что Ваша последовательность больше чем половина последовательности из п.2э

Муторно - но можно и как в п.1 оценивать сумму нескольких членов через одно и то же число. Для перврого курса больше идей нет ((

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение13.01.2011, 23:32 


13/01/11
27
то что последовательность из п.2 больше чем п.1 понятно. Сходимость п.1 через Коши там получается $\frac{p}{n+p}$=(промежуточное действие p=n)=$\frac{n}{2n}>1/2$

-- Пт янв 14, 2011 02:44:32 --

Мы не проходили ряды и это очень огорчает,нигде нет нормальных примеров на исследование сходимости последовательностей,везде только ряды.
п.3 что-то не удается показать

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:12 
Заслуженный участник


09/09/10
3729
Ifreeman в сообщении #399587 писал(а):
нигде нет нормальных примеров на исследование сходимости последовательностей,везде только ряды.

А в чем глобально разница?

А вообще я точно помню, что расходимость $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...$ я доказывал еще на первом курсе, на первом же экзамене по матанализу, с помощью критерия Коши.

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:16 
Аватара пользователя


30/09/10
119

(Оффтоп)

В золотые наши годы мы готовились к экзаменам так. (на лекции, конешно не ходили, так, заскочишь вечерком на спецкурс, побалдеешь, потусуешься). А потом - список билетов-вопросов, пытаешься все сам доказать. Не получилось, или определения не знаешь - в учебник, в лекцию (у девчонок они были,
это интересное явление, его еще предстоит исследовать) или опять на тусовку. Хорошая была подготовочка. Но сейчас, по прошествии многих лет, вижу, что не шибко устойчивая.

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:25 


13/01/11
27
В чем глобально разница я не знаю,потому что не знаю что такое ряды,мы до них,к сожалению,не дошли.
сВиду очень похожи на последовательность,а так...
Ну так вот не могу доказать 3.п Помогите как преобразовывать?

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:25 


26/12/08
1813
Лейден
Ну п.3 легко -
$$
1>\frac{1}{\sqrt{2}},\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{4}},\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}},...
$$
При этом в сумме они все дают последовательность из п.2 - значит сумма первых элементов (которая как раз нам нужна) - и будет больше половины чем сумма всех элементов, так ясно?

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:25 
Заслуженный участник
Аватара пользователя


11/12/05
10057
Ifreeman в сообщении #399587 писал(а):
п.3 что-то не удается показать


$$\begin{align*}1+1 &>1+ \dfrac 1 2\\
\dfrac 1 {\sqrt 3}+\dfrac  1{\sqrt 3}&> \dfrac 1 {\sqrt{3}}+\dfrac 1 {\sqrt{4}} \\
\dfrac  1{\sqrt 5}+\dfrac 1 {\sqrt{5}}&> \dfrac 1 {\sqrt{5}}+\dfrac 1 {\sqrt{6}}\end{align*}$$
...

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:28 
Аватара пользователя


30/09/10
119
Ifreeman (Я - свободный человек - такая расшифровка?) - я к тому, что не фига думать - проходили/не проходили - у вас получится!
И с со старым Новым Годом, конечно, всех!

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:28 


26/12/08
1813
Лейден
Dan B-Yallay
А мой вариант чем Вам не угодил? :?

 Профиль  
                  
 
 Re: Исследовать на сходимость последовательность
Сообщение14.01.2011, 00:35 
Заслуженный участник
Аватара пользователя


11/12/05
10057
Gortaur в сообщении #399627 писал(а):
Dan B-Yallay
А мой вариант чем Вам не угодил? :?


Всем угодил, просто я начал набирать когда вашего ответа еще не было, а когда отправил, ваш уже появился. Не стирать же? :D

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 26 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group