2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 00:23 
Аватара пользователя
Здравствуйте. Всех с Новогодними праздниками. У меня вопрос следующий:
Алфавит состоит из 4 букв a,b,c,d скольско слов можно составить длиной 8 если буква а встречается не более 2 раз.
Решаю так:
1. Рассматриваю 3 случая, а потом нахожу их суму:
1сл. когда а вообще нет (резмещение с повторениями из 3 по 8)
2сл. когда а входит 1 раз (размещение из 3 по 7, потом умножаю на 8)
3сл. когда а входит 2 раза ступор.
Прошу проверьте сделанное и наведите на умную мысль.
А может это и не размещение с повторениями, а разбиение множества? Заранее спасибо.

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 00:37 
Аватара пользователя
Сл.1 и Сл.2 верные.
Сл.3 Можете решать как разбиение 7 элементов на 3 множества. А затем домножить.

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 00:45 
Аватара пользователя
'

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 00:47 
Аватара пользователя
сколько слов можно составить длиной 8 если буква $a$ встречается не более 2 раз

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 00:52 
Аватара пользователя
Dan B-Yallay в сообщении #396528 писал(а):
Сл.3 Можете решать как разбиение 7 элементов на 3 множества. А затем домножить.

Так вот со множествами и не знаю как начать.
Одно множество состоит из двух элементов (буква а)
А почему Вы пишете разбиение 7 элементов, когда по условию 8

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 01:04 
Аватара пользователя
Даже не 7 а 6 элементов. Вам надо

1) представить мысленно 3 коробочки в которые вы должны распределить 6 букв: $b,c,d,b,c,d$

2) между коробками выставлены буквы $a$ вот так: $[\ 1\ ] \ a\  [\ 2\ ]\  a\  [\ 3\ ]$

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 01:13 
Аватара пользователя
Dan B-Yallay в сообщении #396545 писал(а):
Даже не 7 а 6 элементов. Вам надо

1) представить мысленно 3 коробочки в которые вы должны распределить 6 букв: $b,c,d,b,c,d$

2) между коробками выставлены буквы $a$ вот так: $[\ 1\ ] \ a\  [\ 2\ ]\  a\  [\ 3\ ]$

Все понимаю, не могу применить формулу, не перебором же делать? :?:
Здесь про одну группу сказано букв а две штуки, а про остальные буквы нет. Что делать?
Пользовался вот этим примером:http://escov.ucoz.ru/files/5.jpg

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 01:22 
Аватара пользователя
mosya12345
В Сл.1 у Вас была аналогичная задача: распределить числа 1,2,3,4,5,6,7,8 в коробочки под названием $ [b], [c], [d]$.
Как вы ее решали?

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 01:25 
Аватара пользователя
Dan B-Yallay в сообщении #396554 писал(а):
В Сл.1 у Вас была аналогичная задача: распределить числа 1,2,3,4,5,6,7,8 в коробочки под названием .Как вы ее решали?

Размещение с повторениями из 3 по 8
А теперь как я понял из 3 по 6???

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 01:31 
Аватара пользователя
Потому что 2 буквы $a$ у вас уже есть. Вам осталось лишь решить, как рапределить оставшиеся 6 букв $b,b,c,c,d,d,$:
какие поставить слева от обеих $a$, какие поставить между ними и оставшиеся поставить справа от обеих $a$.
"слева"+"между"+ "справа"=3 коробочки.

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 01:48 
Аватара пользователя
что-то я с коробочками запутался сосвсем.
А где посмотреть примеры на тему разбиение множества не подскажите?
Я вот что нашел http://escov.ucoz.ru/files/5.jpg, но тут про все группы сказано по сколько, а в моем примере только про букву $a$, а про остальные может быть и 3 и 2 и 1: babab, babad, badac и т.д.

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 02:10 
Аватара пользователя
Что-то я сам туплю.
У вас не набор $b,b,c,c,d,d,$ а просто 6 позиций в которые надо расставить буквы $b,c,d$

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 02:15 
Аватара пользователя
Dan B-Yallay в сообщении #396560 писал(а):
У вас не набор $b,b,c,c,d,d,$ а просто 6 позиций в которые надо расставить буквы $b,c,d$

Вы подскажете как двигаться дальше?

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 02:19 
Аватара пользователя
Давайте попробуем так:

Сколько есть вариантов разложить 6 пронумерованных тарелок на 3 стола?

 
 
 
 Re: Комбинаторика: размещение с повторениями или разбиение множ?
Сообщение08.01.2011, 02:24 
Аватара пользователя
Dan B-Yallay в сообщении #396562 писал(а):
Сколько есть вариантов разложить 6 пронумерованных тарелок на 3 стола?

А не наоборот?

-- Сб янв 08, 2011 02:27:43 --

Мы по верному пути идем, это точно разбиение на множества?
Меня смущает тот факт, что у нас определена одна группа в 2 элемента, а остальные группы могут быть с различным числом элементов. (пример http://escov.ucoz.ru/files/5.jpg)

 
 
 [ Сообщений: 39 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group