Проверила наборы комплементарных пар простых чисел с константами комплементарности от 5430 до 9494, что соответствует потенциальным магическим константам от 16290 до 28482 (магические константы с шагом 12). И ещё много потенциальных магических констант проверила выборочно.
Совершенный квадрат 6-го порядка не найден.
Много находится квадратов, в которых только одно число не является простым. Вот, например, ещё один такой квадрат:
Код:
337 12203 3967 5573 6967 9203
10159 2801 6529 9431 3529 5801
5209 7331 8839 701 11839 4331
7177 5783 3547 12413 547 8783
3319 9221 6949 2591 9949 6221
12049 911 8419 7541 5419 3911
Полностью из простых чисел совершенный квадрат никак не хочет складываться
Заметила при выполнении “вертушки” странное явление.
В пакетном файле записано копирование константы комплементарности из входного файла:
Код:
COPY A1.TXT B2.TXT
KOMPLA.EXE
SOV6A.EXE
COPY A2.TXT B2.TXT
KOMPLA.EXE
SOV6A.EXE
COPY A3.TXT B2.TXT
KOMPLA.EXE
SOV6A.EXE
. . . . . . . . . .
Когда наблюдала за процессом, заметила, что некоторые константы комплементарности не копируются, то есть на экране появляется 0 вместо нужной константы комплементарности. Почему так происходит?
Так это значит, что когда не наблюдала за выполнением программ, некоторые константы комплементарности пропустились.
Сделала копирование дважды:
Код:
COPY A1.TXT B2.TXT
KOMPLA.EXE
SOV6A.EXE
COPY A2.TXT B2.TXT
COPY A2.TXT B2.TXT
KOMPLA.EXE
SOV6A.EXE
COPY A3.TXT B2.TXT
COPY A3.TXT B2.TXT
KOMPLA.EXE
SOV6A.EXE
. . . . . . . . . .
Пропускать стала реже, но всё равно пропускает.
Придётся для дальнейшей проверки писать одну программу, которая объединит оба этапа: формирование набора комплементарных пар и проверку этого набора на предмет построения совершенного квадрата. Сначала было лень объединять две программы в одну, и сделала “вертушку”. Однако она работает с браком. Лень всегда наказуема
_______
Пока работала программа, составила идеальный квадрат 16-го порядка из простых чисел, конечно, с повторениями чисел. Он составлен из восьми пандиагональных квадратов 4-го порядка с одинаковой магической константой, но из различных чисел. В квадрате 128 различных числа, каждое из них повторено дважды.
Код:
37 73 97 149 863 197 1019 421 1423 2083 1217 1847 2297 2267 2287 2203
271 293 523 613 587 487 827 647 1609 1709 1201 1249 2153 2131 2069 2111
2081 1951 2087 2143 1279 1319 1753 1619 617 709 443 577 643 641 337 281
2179 2281 2251 2293 1871 1223 2099 1427 397 1013 181 859 173 103 89 41
1427 2099 1223 1871 2293 2251 2281 2179 41 89 103 173 859 181 1013 397
1619 1753 1319 1279 2143 2087 1951 2081 281 337 641 643 577 443 709 617
647 827 487 587 613 523 293 271 2111 2069 2131 2153 1249 1201 1709 1609
421 1019 197 863 149 97 73 37 2203 2287 2267 2297 1847 1217 2083 1423
887 227 1093 463 13 43 23 107 2273 2237 2213 2161 1447 2113 1291 1889
701 601 1109 1061 157 179 241 199 2039 2017 1787 1697 1723 1823 1483 1663
1693 1601 1867 1733 1667 1669 1973 2029 229 359 223 167 1031 991 557 691
1913 1297 2129 1451 2137 2207 2221 2269 131 29 59 17 439 1087 211 883
2269 2221 2207 2137 1451 2129 1297 1913 883 211 1087 439 17 59 29 131
2029 1973 1669 1667 1733 1867 1601 1693 691 557 991 1031 167 223 359 229
199 241 179 157 1061 1109 601 701 1663 1483 1823 1723 1697 1787 2017 2039
107 23 43 13 463 1093 227 887 1889 1291 2113 1447 2161 2213 2237 2273
Интересно отметить, что этот квадрат обладает и свойством ассоциативности, и свойством комплементарности (как в совершенных квадратах), однако совершенным квадратом не является.
_________
Скачала и бегло просмотрела книгу: В. В. Трошин. Магия чисел и фигур. - М.: Глобус, 2007.
Ничего нового для себя в книге не нашла о магических квадратах. Раздел о магических квадратах в книге довольно большой, но некий винегрет из давно известных сведений и квадратов.
Только один магический квадрат мне понравился, и тот тоже не автору книги принадлежит, был опубликован в журнале “Математика в школе”, 1995 г. Автор квадрата С. Т. Берколайко. Этот магический квадрат концентрический, в квадрате 7х7 содержится магический квадрат 5х5, а в нём магический квадрат 3х3. Все простые числа в этом квадрате оканчиваются цифрой 7 и представимы в виде
.
Автор книги пишет: “С. Т. Берколайко принадлежит авторство теоремы о необходимости и достаточности существования магического квадрата из 9 попарно различных чисел”.
По-моему, это неверное утверждение. Теорема о необходимом и достаточном условии существования магического квадрата из 9 попарно различных чисел известна давно; наверняка, она была известна автору общей формулы магического квадрата 3-го порядка Бергхольту, да и профессору Ермакову, тоже предложившему общую формулу такого квадрата, тоже, видимо, была известна.
Скорее всего, С. Т. Берколайко просто опубликовал в журнале “Математика в школе” эту теорему без всяких ссылок на источник, откуда он эту теорему взял. Поэтому Трошин подумал, что Берколайко и является автором этой теоремы. Очень распространённое заблуждение!
И ещё один существенный недостаток. Автор книги тоже пользуется устаревшей терминологией, называя пандиагональные квадраты
совершенными. И, конечно, о настоящих совершенных магических квадратах он вообще ничего не пишет.
Говорю “тоже”, имея в виду книгу Ю. В. Чебракова “Магические квадраты. Теория чисел, алгебра, комбинаторный анализ”. - С. - Петербург, 1995.