2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Оптимизации методом модифицированных функций Лагранжа.
Сообщение19.08.2010, 16:08 
Аватара пользователя
Подскажите библиотеки С/С++, Python для условной оптимизации методом модифицированных функций Лагранжа. Целевая функция выпуклая, ограничения - линейные неравенства и уравнения.

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение19.08.2010, 19:53 
Аватара пользователя
Если не найдёте специальных библиотек, берите библиотеки для оптимизации без ограничений, а метод МФЛ довольно прост для программирования самому.

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение19.08.2010, 21:38 
Аватара пользователя
Методы безусловной оптимизации ищут минимум или максимум, а тут надо искать седловую точку. Или я что то не понимаю?

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение20.08.2010, 18:51 
Аватара пользователя
Там ищется именно минимум. Седловая точка функции Лагранжа, если добавить к ней (к функции) соответствующую (т.е. с нужным $K$) штрафную функцию, переходит в точку минимума модифицированной функции Лагранжа. Тут надо правильно выбрать этот штрафной множитель - $K$.

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение21.08.2010, 07:28 
Аватара пользователя
А где можно почитать по выбору штрафной функции?

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение21.08.2010, 10:25 
Аватара пользователя
Что Вы имеете ввиду - выбор множителя $K$ для стандартной квадратичной штрафной функции, или выбор из других видов штрафных функций (отличных от квадратичных).

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение21.08.2010, 17:13 
Аватара пользователя
Для квадратичной штрафной функции необходимо знание векторного параметра - координат нуля штрафной функции.

$f_s = К \sum(\lambda_i - a_i)^2$

Как я понимаю $a_i$ можно найти если минимизировать ещё и по ним.

$K$ Выбирается так чтобы штрафная функция заведомо ликвидировала седло.

Если не трудно дайте ссылку, а то не те книжки читаю или вижу фигу :)

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение21.08.2010, 17:23 
Аватара пользователя
Насчёт координат нуля штрафной функции не понял. Возможно Вы имели в виду вектор двойственных переменных. Метод МФЛ во многих книгах есть - Гилл, Мюррей. Практическая оптимизация. Учебники по оптимизации Васильева, Поляка, Бертсекаса. (Точные названия через Гугл посмотрите).

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение21.08.2010, 18:38 
Аватара пользователя
Если $a_i$ выбрать произвольно, например равными нулю то суммарная функция исказится и экстремум сместится. Если же экстремумы штрафной и функции Лагранжа совпадают то экстремум останется на месте. Найти $a_i$ можно включив их в варируемые переменные. Это мои фантазии :)

Читаю Васильева "Численные методы решения экстремальных задач", 1988. Для ответа на вопрос похоже надо было прочитать следующие страницы :)

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение21.08.2010, 19:55 
Аватара пользователя
Вас трудно понять, потому что Вы не определили какую задачу решаете, каой метод используете, что за вектор $a_i$ ... Если будут вопросы по методу, то распишите его подробнее.

 
 
 
 Re: Оптимизации методом модифицированных функций Лагранжа.
Сообщение22.08.2010, 16:11 
Аватара пользователя
Да, наверное мне трудно понять самого себя :) Спасибо за ссылки. Похоже поможет.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group