Цитата:
А поподробнее можно? Что-то не въехал, а ведь может способ, который и "непрерывность" сохранит.
Берем квадрат, в квадрате точка, делим квадрат на четыре маленьких квадрата, нумеруем их(по часовой), делим отрезок на четыре равных отрезка, нумеруем их, и делаем тоже самое с маленьким квадратом(в котором точка) и с маленьким трезком, в котором будет расположена точка, и продолжаем эту опрерацию дальше-получим непрерывное отображение плоскости на прямую
Цитата:
Если существует отображение, дающее непрерывное множество, то причина не в этом. Вот тут говорили, что якобы "толку мало, потому что тяжело будет изучать такие множества". Тогда вопрос такой "как можно математически формализовать, объяснить, доказать, что толку будет мало"? (при любом способе отображения множества комплексных чисел на прямую)
Ну про толк я думаю они имели ввиду, что у такого изображения будет мало общего с оригиналом- оно ни подобно оригиналу и тд и тп