Пишем полный тензор деформаций (без этого предположения):
Закон Гука состоит в том, что тензор напряжений (грубо говоря сила/площадь) пропорционален тензору деформаций.
Так, я,кажется, понял, в чём недоразумение. В тензоре деформаций квадратичные члены появляются некоторым искусственным образом -- всё зависит от того, что конкретно понимать под "относительными" смещениями (относительными
чего?...). Уж не могу сказать, почему именно такой вариант тензора полагается наиболее выгодным, но, во всяком случае, это -- некоторая условность. Которой, кстати, в одномерном случае не возникнет. Но дело не в этом. А в том, что закон Гука -- принципиально есть результат линеаризации. При которых
все квадратичные поправки сгорают. И сгорают на равных правах -- и чисто геометрические, сидящие в тензоре деформаций, и поправки физического характера, определяемые нелинейностью физических характеристик среды. Которые с первыми ну решительно никак не связаны, а между прочим имеют тоже второй порядок. Поэтому говорить о том, что в "уточнённый" закон Гука будет входить вот ровно этот тензор деформаций, с коэффициентом ровно 1/2 -- нет решительно никаких оснований.
Зато утверждать обратное -- основания весьма есть.
Значит в Вашей формуле
линейности по
быть не может
Дело в том, что для
пружины линейность этой формулы, т.е. постоянство коэффициента
, и в весьма широком диапазоне
-- это просто медицинский факт, против которого не попрёшь. Конечно, если шаг пружины много меньше её диаметра; но ведь так оно и есть.
-- Вт июл 13, 2010 18:14:15 --Да, кстати, а в случае бесконечно жёсткой пружины считать, действительно, ничего не надо, там всё и так понятно. Причём даже не обязательно, чтобы деформации были малы -- достаточно, чтобы относительная жёсткость была много больше "веса" пружины при данном ускорении. Поскольку если в этих условиях перейти в систему отсчёта пружины, а потом сбросить добавившуюся при этом силу инерции, то такой сброс приведёт к бесконечно малым дополнительным деформациям и, следовательно, не изменит общего растяжения.