2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 нелинейный функциональный анализ (неподвижная точка оператор
Сообщение21.09.2006, 16:50 
Аватара пользователя
Дан оператор $F : X \rightarrow X$. $(X , d)$ - полное метрическое простр. Отображение $F$ таково что для некоторого натурального $N$: $F^N$является строго сжимающим. Как доказать наличие единственной неподвижной точки?

 
 
 
 
Сообщение21.09.2006, 17:10 
Берите любое начальное значение $x_0$ и определите последовательность $x_n=F(x_{n-1})$. Последовательность фундаментальная и следовательно в полном пространстве имеет предел. Единственность очевидна, из предположения F(x)=x и F(y)=y получаем $ r (x,y)=r (F(x),F(y))<r (x,y)$ противоречие.

 
 
 
 
Сообщение21.09.2006, 17:19 
Аватара пользователя
Дело в том, что сам оператор F (и его степени меньшие N) может быть несжимающим/(сжимающим не для всех $\ x \in X $) или даже разрывным. С этим у меня проблема.

 
 
 
 
Сообщение21.09.2006, 17:31 
А здесь нет проблемы. Если х и y неподвижные точки для F, то они являются неподвижными точками и для $F^N$.

 
 
 
 
Сообщение21.09.2006, 17:42 
Аватара пользователя
Для меня трудность не в едиственности неподвижной точки, а в доказательстве что последовательность $F^n (\ x_0)$ - фундаментальна. Для Степеней $F^{kN} (\ x_0)$ это очевидно, но как быть другими ?
$ m = kN +r > n= lN+s


$d(F^{kN+r}(\ x_0), F^{lN+s}(\ x_0) ) =  d(F^{kN} (F^r}(\ x_0)) , F^{lN}(F^s(\ x_0) )) =
d(F^{lN}F^{(k-l)N} (F^r}(\ x_0)) , F^{lN}(F^s(\ x_0) )) < k^l  d(F^{(k-l)N} (F^r}(\ x_0)) , F^s(\ x_0) )

k - это коэффициент сжатия дла F^N

 
 
 
 
Сообщение21.09.2006, 17:55 
Это так же просто, берём подпоследовательности $x_{kN+m},m=0,1,...,N-1, k=0,1,2,...$ при фиксированных m. Каждая такая подпоследовательность фундаментальна и сходится к единственному общему (для всех m) пределу. Поэтому и вся последовательность фундаментальна.

 
 
 
 
Сообщение21.09.2006, 17:57 
Аватара пользователя
Спасибо, дошло :)

 
 
 
 
Сообщение21.09.2006, 18:10 
Вообще то, когда пространство не компактное не следует существование предела. Соответственно может не выполняться фундаментальность даже для сжимающего отображения. В качестве примера можно рассмотреть отображение единичного шара Гильбертова пространства последовательностей (с суммой квадратов не больше 1) в себя, определённое по правилу $(x_1,x_2,...)\to (y_1,y_2,....), \ y_{n+1}=x_n(1-\frac{1}{(n+1)^2}), y_1=\sqrt{1-\sum_k x_k^2}.$

 
 
 
 
Сообщение21.09.2006, 18:18 
Аватара пользователя
Dan B-Yallay писал(а):
Для меня трудность не в едиственности неподвижной точки, а в доказательстве что последовательность $F^n (\ x_0)$ - фундаментальна. Для Степеней $F^{kN} (\ x_0)$ очевидно, но как быть другими ?


Фундаментальность последовательности $F^{N}$ гарантируется тем
что отображение $F^{N}$ является сжатием. Поэтому если мы обнаружили
некоторую зависимость(а её существование автоматически вытекает из принципа сжимающих
отображений) N=N(e) такую что если n,m>N то |$F^n (\ x_0)-
F^m (\ x_0)$|<e то нам совершенно не важно какой у неё был "начальный хвост"
раз в конце концов мы по любому e нашли N. Кроме того: факт того ,что отображение
является сжатием гарантирует нам, что функция F является непрерывной а композиция
непрерывных функций так же непрерывна...

 
 
 
 
Сообщение21.09.2006, 20:36 
Существование предела и фундаментальность не гарантируется, даже для сжимающего отображения, когда пространство не компактное.
Пусть F отображение $F: (z_1,z_2,...)\to (0,y_2,y_3,...), \ y_n=(1-\frac{1}{n^2})x_{n-1}.$ Тогда оно сжимающее, а последовательность $x_0=(z_i=2^{-i}), x_n=F(x_{n-1}$ не фундаментальна.

 
 
 
 Сжимающее отображение
Сообщение21.09.2006, 21:15 
Аватара пользователя
Маленькое уточнение.

Отображение $f\colon X\to X$ метрического пространства $X$ с метрикой $d$ называется сжимающим, если существует такое число $\alpha<1$, что для всех $x,y\in X$ выполняется неравенство $d(fx,fy)\leqslant\alpha d(x,y)$.

 
 
 
 
Сообщение21.09.2006, 21:47 
Аватара пользователя
Руст писал(а):
Существование предела и фундаментальность не гарантируется, даже для сжимающего отображения, когда пространство не компактное.
Пусть F отображение $F: (z_1,z_2,...)\to (0,y_2,y_3,...), \ y_n=(1-\frac{1}{n^2})x_{n-1}.$ Тогда оно сжимающее, а последовательность $x_0=(z_i=2^{-i}), x_n=F(x_{n-1}$ не фундаментальна.


Я к сожалению знаю лишь определение компактного множества. Что такое компактное
пространство-мне не известно.
Одно из определений компактного множества таково:
Множество явл. компактным если оно является:
а) Замкнутым
б) Ограниченным

Но для принципа сжимающих отображений -ограниченность совершенно не нужна.
Остаётся лишь замкнутость. Но она следует из того, что Х-полное. Или нет?

 
 
 
 Re: Сжимающее отображение
Сообщение21.09.2006, 21:57 
Someone писал(а):
Маленькое уточнение.

Отображение $f\colon X\to X$ метрического пространства $X$ с метрикой $d$ называется сжимающим, если существует такое число $\alpha<1$, что для всех $x,y\in X$ выполняется неравенство $d(fx,fy)\leqslant\alpha d(x,y)$.

В этом случае всё просто. А я показывал, что при определении сжимающего отображения, как $\forall x\not =y \ d(Fx,Fy)<d(x,y)$ существует контрпример для некомпактного пространства.

 
 
 
 
Сообщение21.09.2006, 22:19 
Аватара пользователя
Woland писал(а):
...
Я к сожалению знаю лишь определение компактного множества. Что такое компактное
пространство-мне не известно.
Одно из определений компактного множества таково:
Множество явл. компактным если оно является:
а) Замкнутым
б) Ограниченным

...

Это неверное определение, хотя названные Вами два свойства множества иногда равносильны его компактности (например, в n-мерном арифметическом пространстве).
В общем случае, подмножество топологического пространства называют компактом, если из любого покрытия этого подмножества открытыми множествами можно выделить конечное подпокрытие. Для метрических пространств термины "компактное множество" и "компактное пространство" - синонимы.
Далее
Цитата:
..Но для принципа сжимающих отображений -ограниченность совершенно не нужна.
Остаётся лишь замкнутость. Но она следует из того, что Х-полное. Или нет?

По определению, пустое подмножество и все топологическое пространство всегда одновременно открыты и замкнуты, с полнотой это никак не связано.

 
 
 
 
Сообщение21.09.2006, 22:55 
Аватара пользователя
Brukvalub писал(а):
Для метрических пространств термины "компактное множество" и "компактное пространство" - синонимы.


Cпасибо за разьяснение.
Brukvalub писал(а):
..Но для принципа сжимающих отображений -ограниченность совершенно не нужна.
Остаётся лишь замкнутость. Но она следует из того, что Х-полное. Или нет?По определению, пустое подмножество и все топологическое пространство всегда одновременно открыты и замкнуты, с полнотой это никак не связано.


Пространство называется полным если всякая фундаментальная последовательность
определённая в нём -имеет предел. Но тогда оно обязанно содержать все свои предельные
точки. То есть быть замкнутым. Или опять что то не так?

 
 
 [ Сообщений: 21 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group