А-а..Я теперь поняла, почему Вы так расплывчато выразились. Потому что если народ постоянно рассматривает решетки Браве, это не должно вызывать осложнений.
Вижу,
Вася, Вы серьезный парень. Посоветую от души.
У меня был спец. курс на теор. кафедре "Теория групп" во втором семестре третьего курса. Но я тут посидела подумала, можно начинать учить сразу после первого курса. Достаточно и линейной алгебры. Так что трудностей у Вас быть не должно. Литературы по этой теме
много (мне как обычно кажется, что высказались все кому не лень). Рассматривать сразу применения в физике нет смысла, надо начать, как говорится, с мат. основ (или в книгах со "введением"). Можно читать по любому учебнику, который после открытия на первой странице и далее где-то посредине Вас не отпугнет и порадует системой обозначений, но не стоит выбирать монографии ученых, которые этим делом занимаются профессионально
. Выучить нужно следующее: 1) Абстрактная теория групп (классы, подгруппы, прямое произведение групп, гомоморфизмы, перестановочные группы); 2) Гильбертовы пространства и операторы (скорее всего уже учили или в линейке или на квантах); 3) Теория представлений конечных групп (инвариантные подпространства и приводимость, лемма Шура и теорема ортогональности, характеры представления, рассмотреть какой-нибудь пример вроде
, регулярные представления, прямое произведение представлений); 4) Непрерывные группы и их представления (топологические группы, группы Ли,
,
,
,
,
, Ли алгебра и представления группы Ли); 5) Кристаллографический и молекулярные симметрии (крист. точечные группы, трансляционные группы (сомневаюсь, что есть такой термин, вобщем, группы связанные с периодичностью крист. решетки), неприводимые представления точечных групп, двойные группы); 6)
Теория групп в физике твердого тела (лучше всего сначала на примере plane square, потом по возрастающей SC, BCC, FCC) . Из всего этого 1) выбрасывать нельзя, 2) скорее всего уже учили, находит применение во многих областях физики, 3) надо читать обязательно, 4) можно не читать, но опять-таки часто встречается, например,
в теории супер струн, 5) тут начинается
специальное. Если Вы все это усвоите, то на изучение применения к физике твердого тела уйдет не больше одного уикэнда. Это не может не радовать не правда ли? Что конкретно могу посоветовать по 5) и 6)
(тут же сразу с физикой конденсированного вещества):
1. Azaroff "Introduction to Solids".
2. Bhagavamtam "Crystal Symmetry and Physical Properties".
3. Bhagavantam and Venkatarayudu "Theory of Groups and Its Applications to Physical Problems".
4. Bloss "Crystallography and Crystal Chemistry".
5. Buerger "Elementary Crystallography".
6. Falikov "Group Theory and Its Physical Applications".
7. Hamermesh "Group Theory".
8. Harrison "Solid State Theory".
9. Jones "Theory of Brillouin Zones and Electronic States in Crystals".
10. Kittel "Quantum Theory of Solids".
11. Kovalev "Irreducible Representations of Space Groups".
12. Loebl "Group Theory and Its Applications".
13. Mariot "Group Theory and Solid State Physics".
14. Meijer and Bauer "Group theory".
15. Slater "Quantum theory of Molecules and Solids".
16. Zak, Casher, Gluck ("глюк" что в переводе с немецкого значит счастье
) and Gur "The Irreducible Representations of Space Groups".
Литература эта немного древняя (по твердому телу! про фазовые переходы есть например у Ландау и др. товарищей), в последнее время наверное много чего наиздавали, в том числе и хорошего, но я не знаю. И не знакома с биб. на русском языке
.
Bообще неплохо было бы сначала немного про физику конденсированного вещества почитать (твердое тело в Вашем случае, ecли еще не проходили, должны). Неплохие учебники Kittel; Ashcroft and Mermin; Christman (недавно переиздали). Это так чтобы хорошо понимать, что к чему, а тогда с теорией групп на 1-2-5 все осмысливается.
По чем конкретно Вы будете читать не так важно. Важно читать то, что Вам будет
нужно (но начинать с абстрактной, конечно). Может Вам будет вполне достаточно той, что есть
в библиотеке Мех.Мата.У меня вот, например, дома с применением в физике есть всего одна единственная книжечка ("неважная", в списке ее нет), там ответ на Ваш вопрос содержится на 10 страницах (а не 50! если не горит, то за недельку могу и отсканить, но они на англицком). Мне все понятно, хотела было Вам рассказать по рабоче-крестьянски, да не знаю как правильно на русском языке выразиться, чтобы термины не попутать.
Если сразу не терпится в бой, то просто идете в
хорошую библиотеку, выбираете самые толстые книги по применении теории групп в физике, еще лучше Condensed Matter Physics, идеально Solid State Physics. В таких наверняка будет все о звездах, все в таблицах (номальный человек такого в голове держать не станет
).
Также конкретнее по теме исследования в интернете статей
немерянно.
Удачи
PS Когда была студенткой, помню читала Любарского и самого Вигнера (там больше в приложении к квант. мех.). Но нам читали прекрасные лекции, так что не было особой необходимости.
Еще вопросик. Это вы курсовую пишете или с научным руководителем начали заниматься?
Цитата:
Если вам интересно то можете ознакомится с данными страницами и вам все станет предельно ясно.
Спасибо, я так чуточку сталкивалась..
PSPS Вот посмотрела в библиотеке, по-моему стоит посмотреть следующее:
http://lib.mexmat.ru/books/1354
http://lib.mexmat.ru/books/695
Куроша читала учебник. Курош преподавал. "Отцы и дети"..