2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Triangle problem (open)
Сообщение21.02.2010, 02:23 
Аватара пользователя


13/10/07
755
Роман/София, България
It is given a triangle ABC. Inside triangle are chosen two points M and N. If <MAC=<NBC, <MCA=<NCB and AN=BM is it true that AC=BC?

 Профиль  
                  
 
 Re: Triangle problem (open)
Сообщение05.03.2010, 18:36 


03/03/10
2
It's not true. Let's <MAC=a, <MCA=b. If true 2*(cos(a))^2*(tg(a)+tg(b))=1, we anable to perform geometrical construction.

 Профиль  
                  
 
 Re: Triangle problem (open)
Сообщение06.03.2010, 16:11 
Аватара пользователя


13/10/07
755
Роман/София, България
Thank you very much for the answer. Can you be more detailed?

 Профиль  
                  
 
 Re: Triangle problem (open)
Сообщение07.03.2010, 13:14 


20/04/09
1067
"open problem" such a claim imposes some obligation :mrgreen:

 Профиль  
                  
 
 Re: Triangle problem (open)
Сообщение08.03.2010, 20:55 


03/03/10
2
If we consider rectangular coordinate system with axe OX == AC (right-handed system) and OX == BC (left-handed system), we can get that

BM^2 = AB^2 * ((cos(A) - (sin(B)/sin(C)) / (tg(a) + tg(b)))^2 + (sin(A) - (sin(B)/sin(C)) * (tg(a)/ (tg(a) + tg(b)))^2)

AN^2 = AB^2 * ((cos(B) - (sin(A)/sin(C)) / (tg(a) + tg(b)))^2 + (sin(B) - (sin(A)/sin(C)) * (tg(a)/ (tg(a) + tg(b)))^2)

If we transform AN = BM, we can get that 2 * (cos(a))^2 * (tg(a)+tg(b)) = 1 or <A = <B for execution equality.

 Профиль  
                  
 
 Re: Triangle problem (open)
Сообщение09.03.2010, 00:42 
Аватара пользователя


13/10/07
755
Роман/София, България
I'm sorry for the stupid questions but I have 3 more questions:
1. why are you using coordinate system (Analytical Geometry) isn't it possible the problem to be solved by using only trygonometry?
2. Are A,B,C equal to <BAC, <ABC, <BCA respectively and <MAC=a, <MCA=b?
3. Can you describe how you obtained your first equality?

 Профиль  
                  
 
 Re: Triangle problem (open)
Сообщение09.04.2010, 00:07 
Аватара пользователя


13/10/07
755
Роман/София, България
I'm sorry for loosing your time. The problem is very easy. I solved it in my own very simple way. It requires more concentration. No coordinate system is required. Only simple trigonometry.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group