Someone писал(а):
Joker90 писал(а):
Феллер, "Введение в теорию вероятностей и ее приложения", т. 1, стр. 336.
Матожидание для r=1 меньше, чем матожидание для r=2? Странно, но сделайте расчеты сами.

возрастает с ростом

, то есть, появления более коротких серий приходится ждать в среднем меньшее время. А почему это Вас удивляет? Или я чего-то не понял?
Разделите n на мю. Мю возьмите из 7.7.
Получится, что для монеты не действует формула v= [(1/2)^r]*n, где v - среднее число серий в выборке; r - длина серии; n - к-во испытаний.