Посмотрела в Википедии. Да, там написано, что это составные числа (догадываюсь, что composite значит "составной"). Тогда это меняет дело. И нет нужды писать, что квадрат должен заполняться составными смитами, если смиты всегда составные числа. По-моему, в статье из журнала "Наука и жизнь", по которой я познакомилась со смитами, не написано, что это обязательно составные числа. Может быть, невнимательно читала.
-- Пн июл 20, 2009 12:32:14 --Ещё один нетрадиционный совершенный магический квадрат 4-го порядка из простых чисел по последней, приведённой только что tolstopuz'ом, прогрессии длиной 16:
Код:
53297929 121195759 169694209 159994519
179393899 150294829 62997619 111496069
82396999 92096689 198793279 130895449
189093589 140595139 72697309 101796379
(если не ошиблась в вычислениях).
Понятно, что аналогичные квадраты 4-го порядка можно строить из простых чисел, образующих прогрессии большей длины (17, 18 и т. д.). В этих случаях можно построить не один квадрат.
-- Пн июл 20, 2009 15:45:03 --Да, невнимательно читала, хотя надо заметить, что определение смитов в статье можно было бы дать поотчётливее. Вот цитата из статьи (журнал "Наука и жизнь", № 3, 2009 г.):
"Быть может, этот факт так и остался бы в разряде числовых курьёзов, не вмешайся в историю родственник Смита — математик, профессор одного из американских университетов Альберт Виланский. Он опубликовал в 1982 году заметку об обнаруженном свойстве, а обладающие им
составные числа назвал именем Смита. Тогда же Виланский предположил, что таких чисел существует бесконечно много. И оказался прав: вскоре эту гипотезу доказал его коллега. Так было положено начало исследованию весьма интересного множества чисел". (выделено мной)
-- Пн июл 20, 2009 16:58:35 --А из прогрессий меньшей длины (меньше 16) тоже можно строить магические квадраты 4х4, только в этом случае будут повторяющиеся числа. На худой конец сгодятся и такие квадраты. Вот, например, прогрессия из шести простых чисел, котрая находится с ходу:
. Запускаю программу для построения нетрадиционных магических квдаратов 4-го порядка для данного массива чисел, вот первое из полученных решений:
Код:
7 67 97 37
157 7 37 7
37 127 37 7
7 7 37 157
Здесь разных чисел очень мало, поэтому повторений много.
tolstopuz, из найденной вами прогресии из 12 смитов уже можно построить магический квадрат 4х4, будет всего 4 числа повторяться. Это решение задачи в первом приближении. Принимается