2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 19, 20, 21, 22, 23, 24, 25 ... 33  След.
 
 Re: Фундаментальные свойства степеней
Сообщение16.06.2009, 15:09 


06/12/08
115
Maxal

Shwedka

Увлекшись подготовкой ответов maxal, допустил невнимательность, читая его же вопросы (Shwedka права).
Уточнение таково: для случаев, когда $c$ делится на 3, необходимо рассматривать только два случая:
Первый $c=3$, или, что то же $c=3*1^3$
Второй $c=9c_1^3$, по maxal-у $c=9u^3$
Случай $c=u^3$ рассмотрен в предыдущем сообщении.
Пожалуйста, вопросы дальше. Я буду во вторник сл. недели.
С уважением Petern1.


Venco

Ваше «Почуму?». Я понял, что оно относится к словам: «если
$b_1-3b_2c=p_1,$ то и $b_2$, которое слева, должно делиться на $p_1$». Но позвольте, разве не так?
$b_2^3=(b_1-3b_2c)(b_1+3b_2c+9c^3)$ Если это есть равенство и мы предполагаем, что справа есть делитель $p_1$, то он должен быть и слева. Т. е. быть множителем буквы $b_2$. Мы ведь оперируем целыми числами. Или я Вас неправильно понял? С уважением Petern1.

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение16.06.2009, 19:16 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Petern1 в сообщении #222549 писал(а):
то справа есть делитель $p_1$, то он должен быть и слева. Т. е. быть множителем буквы $b_2$.

Это Ваша постоянная ошибка!
Из того, что $b_2^3$ делится на $p_1$,
НЕ СЛЕДУЕТ,
что $b_2$ делится на $p_1$.
Petern1 в сообщении #222549 писал(а):
Случай $c=u^3$ рассмотрен в предыдущем сообщении.

Рассмотрен, с той же самой ошибкой!

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение22.06.2009, 20:52 


06/12/08
115
Shwedka

Я мог бы взаимно попросить Вас пояснить Ваше утверждение: «Из того, что $b_2^3$ делится на $p_1$ не следует, что и $b_2$ делится на $p_1$». Предполагаю, что в ответ Вы привели бы числовой пример: 27 делится на 9, но 3 не делится на 9. А также привели бы пример в буквах: $b_2=p_1p_2,  b_2^3=p_1^3p_2^3,  p_1^3p_2^3$ делится на $p_1^2$, но $p_1p_2$ на $p_1^2$ не делится. Или еще. Пусть $b_2=p_1^5p_2,  b_2^3=p_1^15p_2^3$. Так вот такое $b_2^3$ делится на $p_1$ в степенях от 1 до 15. Но $b_2$ равный $p_1^5p_2$ не может делиться на $p_1$ в степенях от 6 до 15. НЕ ТАК ЛИ???

А теперь вернемся к нашему равенству.
$b_2^3=(b_1-3b_2c)(b_1+3b_2c+9c^3)$.
После того, как мы пришли к заключению, что множители справа являются взаимно простыми числами и их произведение может быть равно кубу только в том случае, если они оба являются кубами. И далее, я с Вами согласен, надо рассматривать случаи:
Первый случай, когда $b_1-3b_2c=p_1$ где $p_1$ есть число в первой степени. Тогда $b_2=p_1p_2,  b_2^3=  p_1^3p_2^3$. Этот случай был мною рассмотрен.
Второй случай, когда $b_1-3b_2c=p_1^k$. Тогда $b_2=p_1^kp_2$
$b_2^3=(p_1^k)^3p_2^3$. И давайте посмотрим к чему мы придем в этом случае. $b_1-3b_2c=p_1^k$ должно быть равно не только этой степени $p_1^k$, но и кубу.
$b_1-3b_2c=(p_1^k)^3$, $b_1=3b_2c+(p_1^k)^3$. Теперь значения $b_1$ и $b_2$ подставим во второй множитель, который мы считаем равным $p_2^3$
$p_2^3=(p_1^k)^3+3p_1^kc+3p_1^kc+9c^3$
$p_2^3-(p_1^k)^3=3c(2p_1^kp_2+3c^2)$.
Как видите, уважаемая Shwedka, мы получили равенство аналогичное тому, которое рассматривалось ранее, на предыдущей странице. И если с этого места проделать выкладки (я их не повторяю), то мы придем вот к такому результату:
$3*3[(p_1^k)^2+3p_1^k+3]=3*3[2(p_1^k)^2+6p_1^k+27]$
$(p_1^k)^2+3p_1^k+24=0$. Равенство не состоялось. Выводы те же. Жду Ваших дальнейших суждений, вопросов, возражений.
Petern1.

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение22.06.2009, 21:02 


20/04/09

113
shwedka Простите, что я опеть вмешиваюсь Я далеко не ферматик и не надеюсь, что решение ВТФ можно вывечти в элементаркой математике, НО
Вы уже много раз пишете, что если $a^3|b$, то и $a|b$, но это неверно, ведь как уже было сказаго 27 делится на 9, но 3 не делится на 9

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение22.06.2009, 21:29 


12/09/06
617
Черноморск
Наверное, я чего-то не понимаю, но откуда такой лихорадочный интерес к целым числам? Целые числа это числа для счета. Чем целые числа N, в этом смысле, лучше любой другой арифметической прогрессии aN + b?

 Профиль  
                  
 
 Разуйте глаза, LetsGOX
Сообщение22.06.2009, 21:38 


24/05/05
278
МО
LetsGOX в сообщении #224066 писал(а):
shwedka Простите, что я опеть вмешиваюсь Я далеко не ферматик и не надеюсь, что решение ВТФ можно вывечти в элементаркой математике, НО
Вы уже много раз пишете, что если $a^3|b$, то и $a|b$, но это неверно, ведь как уже было сказаго 27 делится на 9, но 3 не делится на 9

Ну-ка, ну-ка, покажите хоть одно место в постах shwedk'и, где она это утверждала.

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение22.06.2009, 23:50 
Заблокирован
Аватара пользователя


17/06/09

2213
Petern1 и другие участники.
Может я чего-то не пойму? Но пусть $a^3-b^3=x^3$. Откуда
$a^3-b^3=c(3b^2+3bc+c^2)=c_1^3(3b^2+3bc_1^3+(c_1^3)^2)$, где $c_1^3=c=a-b$.
Тогда $c_1^3(3b^2+3bc_1^3+(c_1^3)^2)=3b^2c_1^3+3b(c_1^3)^2+(c_1^3)^3=x^3$. Откуда $x^3\div c_1^3$, $\dfrac{x^3}{c_1^3}=x_1^3$.
Тогда $x_1^3-(c_1^3)^2=3b^2+3bc_1^3=3b(b+c_1^3)$. Но т.к. $c_1^3=c=a-b$, то $b+c_1^3=a$. Откуда
$x_1^3-(c_1^3)^2=3b(b+c_1^3)=3ab$.
Т.к. левая часть разность кубов, то если она делится на $3$, то делится и на $9$. Откуда либо $a$, либо $b$ делится на $3$. Что еще переливать из пустого в порожнее, когда выше трех все равно ваш метод никуда не пойдет.

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение23.06.2009, 00:02 
Заслуженный участник


04/05/09
4589
age в сообщении #224113 писал(а):
Но пусть $a^3-b^3=x^3$. Откуда
$a^3-b^3=c(3b^2+3bc+c^2)=c_1^3(3b^2+3bc_1^3+(c_1^3)^2)$, где $c_1^3=c=a-b$.

Откуда взялось $c_1^3=c$?

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение23.06.2009, 09:48 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Petern1 в сообщении #224062 писал(а):
А также привели бы пример в буквах:.......НЕ ТАК ЛИ???

числового примера достаточно, чтобы Ваше утверждение опровергнуть
Petern1 в сообщении #224062 писал(а):
$b_2^3=(b_1-3b_2c)(b_1+3b_2c+9c^3)$.
После того, как мы пришли к заключению, что множители справа являются взаимно простыми числами

Неверно.может быть общий множитель 3.
Petern1 в сообщении #224062 писал(а):
$p_1$ есть число в первой степени

Что это такое???Любое число является числом в первой степени.
Petern1 в сообщении #224062 писал(а):
Тогда $b_2=p_1p_2, b_2^3= p_1^3p_2^3$. Этот случай был мною рассмотрен.

С ошибками.Предъявите доказательство

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение23.06.2009, 17:13 


06/12/08
115
Shwedka

Первое замечание опускаем как не существенное.
Второе замечание: по поводу
$b_2^3=(b_1-3b_2c)(b_1+3b_2c+9c^3)$, множители справа---взаимно простые числа. Ваши слова «Неверно. Может быть общий множитель 3». Конечно, когда смотришь на эти множители, то просто кажется очевидным, что они оба могут делиться на 3, когда $b_1$ делится на 3.
Но, Shwedka! В том то и дело, что здесь рассматривается случай, когда ни $b_1$ ни $b_2$ на 3 не делятся. Надо вернуться к началу (стр. 21) и там, в ответе maxal-у увидеть, что мы рассматриваем случай разностей кубов $a^3-b^3$, когда $a-b=9c^3$. И в этом случае мы должны брать такие $a$ и $b$, которые на 3 не делятся, иначе они будут не взаимно простые. В дальнейшем мы числу $b$ присвоили индекс $b_1$. Поэтому упомянутые выше множители на 3 не делятся.
Я полагаю, что Вы это замечание снимете.
Трете замечание: Shwedka, ранее Вы указывали на то, что если $b_2^3$ делится на $p_1$, то из этого не следует, что $b_2$ тоже делится на $p_1$. Это так.
Поэтому я Вам и предложил рассматривать два случая
$b_1-3b_2c=p_1$
$b_1-3b_2c=p_1^k$. В первом случае мы берем такие $b_1,b_2,c$, при которых разность равна не степени, или числу в первой степени $p_1$. Во втором случае берем $b_1,b_2,c$, такие, при которых разность равна уже степени $p_1^k$. Что же тут не понятного? И я здесь же рассмотрел второй случай и, как и в первом случае, мы желаемое равенство не получаем (см. предыдущий ответ). Этим самым устраняется недостаток, или, если хотите ошибка, прежнего изложения. И этим же дается ответ и на Ваше 4-ое здесь замечание. Такой ошибки у меня уже нет. Что скажете Вы, уважаемая Shwedka?
Petern1.

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение23.06.2009, 17:20 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Petern1
Приведите ВАше рассуждение целиком. Никто не станет собирать его из исправленных фрагментов.

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение23.06.2009, 22:06 


06/12/08
115
Shwedka

Хорошо. Это я смогу выполнить в следующий вторник-среду.
Благодарю за общение. Petern1.

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение23.06.2009, 22:52 
Заслуженный участник


04/05/09
4589
Petern1, вы знаете, что Великую Теорему Ферма уже доказали для всех степеней?

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение25.06.2009, 21:56 
Заблокирован
Аватара пользователя


17/06/09

2213
Petern1
Обратите внимание, что в своем доказательстве на стр.20 вы дошли до числа $2187$
Petern1 писал(а):
... После подстановки и сокращения на $9$ получим
$2187b_2_,_3^3+81b_2_,_3^2c^2-81b_1_,_3^2=c^3(b_1_,_3-b_2_,_3c)$. Теперь уже слева появился множитель $81$, которого справа нет. И становится очевидным ...

Вам не становится очевидным что тут уже пора задуматься над ошибкой? И не мучать весь форум 4-значными числами при доказательстве для троек. Если бы на месте $3$ было $17$ - вы бы, полагаю, рассматривали числа порядка $410338673b_{16}_,_{17}^{17}$ и заставляли весь форум искать ошибки?
Я конечно понимаю, что можно на скорую руку сварганить ни для кого не понятное доказательство в 100 стр. и считать себя вундеркиндом, т.к. никто не смог его не то чтобы разобрать, даже дочитать до конца. Но есть ли в этом смысл?

 Профиль  
                  
 
 Re: Фундаментальные свойства степеней
Сообщение30.06.2009, 05:46 


06/12/08
115
venco

В литературе упоминается, что теорема Ферма доказана для очень многих степеней. Но чтобы для всех…я что-то такого не встречал. Venco, если можно приведите такое доказательство здесь. Буду благодарен.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 489 ]  На страницу Пред.  1 ... 19, 20, 21, 22, 23, 24, 25 ... 33  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: talash


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group