2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 что такое идеальный элемент? (компактификация C)
Сообщение15.06.2009, 22:38 
Цитирую Шабата Б.В "Введение в комплексный анализ." том 1. стр. 12

"В некоторых вопросах удобно компактифицировать множество комплексных чисел С. Это делается добавлением к нему идеального элемента, который называется бесконечной точкой."

Вопрос: что такое идеальный элемент?

 
 
 
 Re: что такое идеальный элемент?
Сообщение15.06.2009, 23:42 
Аватара пользователя
"Иногда банан - это просто банан." Ничего не значит. Считайте, что вместо слов "идеальный элемент" там слово "хрень". Смысл всей фразы от этого не изменится.

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 07:46 
Аватара пользователя
Codegrammer в сообщении #222395 писал(а):
"В некоторых вопросах удобно компактифицировать множество комплексных чисел С. Это делается добавлением к нему идеального элемента, который называется бесконечной точкой."

Вопрос: что такое идеальный элемент?

Надо разобраться, что такое компактифицировать множество комплексных чисел С. Если разберемся, то узнаем кое-что про идеальный элемент (это то, добавление чего позволяет компактифицировать ...)

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 11:24 
Аватара пользователя
Если комплексную плоскость представить через стереографическую проекцию, то это будет Северный полюс.
Таким образом плоскость дополняется до сферы.
По мне идеальный элемент - Южный полюс.
Но прфессору видней.

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 11:44 
Аватара пользователя
По-моему, эта штука называется "сфера Римана"

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 12:02 
Аватара пользователя
Профессор Снэйп в сообщении #222497 писал(а):
По-моему, эта штука называется "сфера Римана"

А вот и профессор.

Некоторые именно так и называют. Хотя у Римана есть замечательная теорема,
относительно проекции круга.
Кстати, плоскость не обязательно комплексная.

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 15:36 
Аватара пользователя
Это Интересно

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 16:28 
Аватара пользователя
В некоторых вопросах действительного анализа иногда к действительной прямой добавляют две бесконечности (с разными знаками). Правда, компактификацией это не называют. В комплексном анализе добавление бесконечной точки - это переход от $C$ к проективному пространству $CP$, которое изоморфно сфере. Но сама сфера возникает только вначале курса. Дальше её что-то не видно (может плохо смотрел?). Хотя бесконечная точка встречается регулярно. Наверное сфера нужна для прояснения смысла $CP$.

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 17:56 
Аватара пользователя
мат-ламер в сообщении #222585 писал(а):
В некоторых вопросах действительного анализа

Хороший термин.
Можно я его буду цитировать?

 
 
 
 Re: что такое идеальный элемент?
Сообщение16.06.2009, 18:57 
MGM в сообщении #222599 писал(а):
В некоторых вопросах действительного анализа иногда к действительной прямой добавляют две бесконечности (с разными знаками). Правда, компактификацией это не называют.

Да и Шабат назвал это из чистого пижонства -- в ТФКП (с точки зрения её внутренних потребностей) эта компактификация откровенно не пришей кобыле хвост. Хотя формально -- и впрямь компактификация: действительно, после такого пополнения комплексная плоскость (с естественной топологией) и впрямь становится компактом. Только зачем становится-то?...

 
 
 
 Re: что такое идеальный элемент?
Сообщение17.06.2009, 09:38 
Аватара пользователя
MGM. Цитируйте. Но я имел в виду следующее. Обычно в анализе символы $+\infty$ и $-\infty$ используются в формулах как значения некоторых пределов (т.е. в смысле потенциальной бесконечности). Теперь см. Рокафеллар Р.Т. Выпуклый анализ, стр. 40. Действительная прямая дополняется двумя символами $+\infty$ и $-\infty$, которые дальше во всех формулах участвуют наравне с обыкновенными числами, т.е. на них распространяются операции арифметики (с некоторыми исключениями). Т.о. мы имеем актуальную бесконечность.

 
 
 
 Re: что такое идеальный элемент?
Сообщение17.06.2009, 10:38 
Аватара пользователя
мат-ламер в сообщении #222704 писал(а):
MGM. Цитируйте. Но я имел в виду следующее. Обычно в анализе символы $+\infty$ и $-\infty$ используются в формулах как значения некоторых пределов (т.е. в смысле потенциальной бесконечности). Теперь см. Рокафеллар Р.Т. Выпуклый анализ, стр. 40. Действительная прямая дополняется двумя символами $+\infty$ и $-\infty$, которые дальше во всех формулах участвуют наравне с обыкновенными числами, т.е. на них распространяются операции арифметики (с некоторыми исключениями). Т.о. мы имеем актуальную бесконечность.

мат-ламер, с добрым утром. Мне не это понравилось.
Действительный анализ, в противовес мнимому.
Хотя понимаю, что это уже устойчивый сленг. :)
Кстати о бесконечности. Для $\[
IR^2 
\]$ также можно замкнуть на одну точку.
и для одномерного случая иногда используют замыкание.
Или в выражениях для предела числа Эйлера используют просто бесконечность, чотбы не писать плюс.минус.

 
 
 
 Re: что такое идеальный элемент?
Сообщение17.06.2009, 11:10 
компактификация $\mathbb{C}$ это как раз вещь очень важная. один пример: риманова поверхность многочлена (точнее обратной к нему функции)замкнута (компактное многообразие без края). на основании этого факта, в терминах разрешимости группы монодромии, доказывается, теорема Абеля о неразрешимости уравнения степени $\ge 5$ в радикалах. другие содержательные примеры см. Шабат Введение в комплан том 2.
тривиальньный пример использования компактификации (тут можно, конечно, и без не обойтись) связь суммы вычетов функции в конечных точках с вычетом в бесконечности. если представить себе замкнутую кривую на сфере Римана по одну сторону от которой находятся все особенности функции в конечных точках, а по другую бесконечная точка то смысл теоремы становится очевидным.
вообще о компактификациях топологических пространств полезно почитать в книжке Энгелькинга Общаяя топология.

-- Wed Jun 17, 2009 13:06:10 --

MGM в сообщении #222718 писал(а):
Для $\[ IR^2 \]$ также можно замкнуть на одну точку.

каждое локально компактное хаусдорфово пространство можно компактифицировать добавлением одной точки

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group