2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Функция от сопряженного?
Сообщение02.05.2009, 09:47 
Подскажите пожалуйста корректно ли выражение $f(z)=\overline{z}$ (можно ли сопряжение назвать функцией).

И еще. Если $e^{e^z}$ - целая функция, можно ли сказать, что $f(z)=e^{e^{\overline{z}}}$ - целая?

Спасибо.

 
 
 
 
Сообщение02.05.2009, 10:03 
1). Можно -- функцией можно назвать вообще всё что угодно.

2). Нельзя -- иначе была бы аналитической функция $\ln\ln f=\overline z,$ а это неправда.

 
 
 
 
Сообщение02.05.2009, 10:18 
По пункту 1.

Выражение нельзя назвать функцией, ибо оно есть объект метатеории. :roll:

Но вообще сопряжение - функция, да. Но не голоморфная. См. определение функции по Дирихле.

Впрочем, готов поверить, что некоторые различают термины "функция" и "отображение", зарезервировав слово "функция" для отображений из $\mathbb{R}$ в $\mathbb{R}$. Но в курсе комплексного анализа это странно.

 
 
 
 
Сообщение02.05.2009, 10:20 
Большое спасибо за ответы.

 
 
 
 
Сообщение02.05.2009, 22:10 
Mystery в сообщении #210156 писал(а):
можно ли сопряжение назвать функцией

AD в сообщении #210162 писал(а):
Выражение нельзя назвать функцией,

AD, по-моему, Вы схитрили. Для понту. А я типа раскусил. :)

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group