2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Соединить параболу и прямую отрезком наименьшей длины
Сообщение20.04.2009, 19:55 
Русла двух рек (в пределах некоторой области) приближенно представляют параболу $y=x^2$ и прямую $x-y-2=0$. Требуется соединить данные реки прямолинейным каналом наименьшей длины. Через какие точки его провести?

Соображений, к сожалению, нет.

 
 
 
 
Сообщение20.04.2009, 20:04 
Stolen Кстати у меня есть идейка
Существует такая формула касательной в графику функции, а существует перпендикуряра к функции в данной точке. Она выглядит как $y=f(x_0)-\frac{x-x_0}{f'(x_0)}$
Таким образом вы можете найти точку на параболе, перпендикуляр к которой образует наименьшее расстояние к прямой

 
 
 
 
Сообщение20.04.2009, 20:20 
Аватара пользователя
Учитывая, что парабола ограничевает выпуклую область, можно ещё попробовать провести к параболе касательную, параллельную данной прямой.

 
 
 
 
Сообщение20.04.2009, 20:21 
Аватара пользователя
Пишем $\[\{ t,t^2 \} \]$ и $\[\{ s,s - 2\} \]$ - это раз.
Пишем $\[(t - s)^2  + (t^2  - s + 2)^2 \]$ - это два
Вычисляем, вычисляем, вычисляем... Что? А! Да! Минимум!
Это три.

Добавлено спустя 1 минуту 5 секунд:

gris писал(а):
Учитывая, что парабола ограничевает выпуклую область, можно ещё попробовать провести к параболе касательную, параллельную данной прямой.

тут вообще-то общая нормаль нужна

 
 
 
 
Сообщение20.04.2009, 20:35 
Аватара пользователя
Ещё можно заметить, что это вариационная задача с подвижными концами.

Если вспомнить про условия трансверсальности, то получится несложная системка.

Хотя быть может это из пушки по воробьям.

 
 
 
 
Сообщение20.04.2009, 20:37 
Аватара пользователя
Продолжать? Или все-таки сами частные производные по $t$ и $s$ нулю приравняете и решите получившуюся несложную системку?

 
 
 
 
Сообщение20.04.2009, 20:41 
Аватара пользователя
Не пугайте человека. Вообще-то ещё гладкость важна. Как на бумажке мы бы делали? Приложили к прямой линеечку и двигали бы параллельно самой себе в сторону параболы, пока в неё не упрёмся. Ну в случае параболы - пока не коснёмся. Где коснулась, там и первая точка. И проекцию на прямую или через нормаль.

LetsGoX правильно подсказал - где нормаль к параболе перпендикулярна прямой, там и точка.

 
 
 
 
Сообщение20.04.2009, 20:52 
Аватара пользователя
А где-то в условии сказано, что задача должна быть решена циркулем и линейкой? )))

Добавлено спустя 4 минуты 59 секунд:

P.S. $$\[\left\{ {\frac{1}{2},\frac{1}{4}} \right\},\left\{ {\frac{{11}}{8}, - \frac{5}
{8}} \right\}\]$$

 
 
 
 
Сообщение20.04.2009, 22:49 
Stolen на соседнем форуме поставил эту же задачу.
Изображение

 
 
 
 
Сообщение21.04.2009, 08:42 
Аватара пользователя
Точка на параболе имеет вид $(x, x^2)$. Расстояние от этой точки до прямой $ax+by+c$ с точностью до положительного множителя выражается формулой $|ax+bx^2+c|$. Остаётся найти минимум этой функции. Где этот минимум достигается - а не в вершине ли параболы $y=bx^2+ax+c$, ежели она не пересекает ось абсцисс? :)

 
 
 
 
Сообщение21.04.2009, 08:53 
Аватара пользователя
Из середины произвольного отрезка, который параллелен прямой и концы которого лежат на параболе, опустите перпендикуляр на ось икс. Перпендикуляр пересечет параболу в искомой точке.

 
 
 
 
Сообщение21.04.2009, 09:44 
 !  vvvv, бан на одну неделю за использование ссылок на картинки с формулами и приведение полного решения простейшей учебной задачи.

 
 
 
 
Сообщение21.04.2009, 09:55 
Ну, не так всё страшно, решение-то у него весьма нерационально, и разобрать что-то на той картинке (после нахождения точки) -- не так просто.

 
 
 
 
Сообщение21.04.2009, 10:05 
Аватара пользователя
ewert писал(а):
Ну, не так всё страшно, решение-то у него весьма нерационально, и разобрать что-то на той картинке (после нахождения точки) -- не так просто.
Точно! Лучше bot'а в каталажку на месяц, у него рациональное! :D

 
 
 
 
Сообщение21.04.2009, 12:10 
Аватара пользователя
Я в некоторой печали приведу ещё два возможных решения задачи:
- численное, с использованиея excel
- физическое с использованием абсолютно гладких проволочек, моделирующих реки, и надетой на них резиночки...

А вообще думаю, что вполне можно продолжать обсуждение задачи и даже предлагать решения после того, как вопрошающий был полностью удовлетворён или попросту свалил. (Достопочтенный Stolen был, несомненно похищен злыми духами.)
Даже для этой простой задачи были предложены несколько способов решения. И эффективные, и эффектные, и наглядные, и школьные, и требующие знания аналитической геометрии.
Я, как и, наверное, многие участники и гости форума, с интересом читаю затянувшиеся обсуждения уже решённых задач, споры о точности условий, предложение красивых решений.
К чему я это всё?

 
 
 [ Сообщений: 25 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group