Если последовательность неограничена, например, сверху, то из нее всегда (очевидным, но нудно описываемым методом) можно выбрать монотонно возрастающую подпоследовательность. Если не понятно - придется все-таки описать. Аналогично снизу. Если посл-ть ограничена, т.е. заключена в некотором интервале (А,В), то она обязательно имеет хотя бы одну предельную точку (теорема из матанализа). Пусть а - предельная точка. Это значит , что существует подпоследовательность исходной последовательности, сходящаяся к а. Рассмотрим 2 случая:
1) В этой подпоследовательности есть бесконечно много членов, равных а. Тогда, составляя из них новую подпоследовательность, будем иметь монотонную (ее можно назвать хоть убывающей, хоть возрастающей) подпоследовательность исходной последовательности (чего и добиваемся).
2) Таких членов конечное число. Удалим их. Тогда останется подпоследовательность исходной последовательности, которая сходится к а, но все члены которой отличны от а. С ней и будем работать, называя ее последовательностью а(1), а(2), .....
Легко доказать следующее утверждение: либо В ЛЮБОЙ левой окрестности (а-е,а) есть бесконечно много членов этой последовательности, либо В ЛЮБОЙ правой окрестности (а,а+е) есть бесконечно много членов этой последовательности (от противного, тогда легко построить обычную двухстороннюю окрестность точки а, в которой нет ни одного члена последовательности, а потому число а не может быть ее пределом).
Без ограничения общности будем считать, что В ЛЮБОЙ левой окрестности (а-е,а) есть бесконечно много членов последовательности а(1), а(2), .... . Тогда будем строить монотонно возрастающую подпоследовательность a(n1), a(n2),....
Рассмотрим левую окрестность (а-1,а). В ней по предположению бесконечно много членов последовательности (отличных от а!). В качестве первого члена a(n1) строящейся подпоследовательности берем любой из них. Далее, рассмотрим левую окрестность (а(n1),a). В ней бесконечно много членов исходной последовательности (не равных а!). Любой из них берем в качестве a(n2). Далее рассматриваем левую окрестность (а(n2),a) и выбираем из нее a(n3) - это любой из находящихся там членов исходной последовательности. И т.д. . Ч.т.д.
(
http://e-science.ru/forum/index.php?showtopic=10894)
Вот ссылочка на решение=)
У меня все прокатило))