Так я не понял, каков ответ? Для любой совокупности натуральных чисел любое натуральное число будет "своим" или нет?
"Своим" будет только то, которое этой совокупности принадлежит (является её элементом). По-моему, я это прошлый раз написал. У разных совокупностей разные "свои" элементы.
Я дал определение "такому понятию". Можете "считать" вместе со "всеми остальными" про конечные и бесконечные множества всё, что угодно, но это не имеет никакого отношения к вопросу о том, что я имею в виду, когда употребляю термин "актуальная бесконечность".
То есть, это Ваше собственное изобретение. Вопрос исчерпан. Такое "понимание" "актуальной бесконечности" - это Ваша собственная проблема, к математике отношения не имеющая.
А я Вам о чём твержу? О том, что типы не являются объектами предметной теории, ибо определяются свойствами, а не предметными переменными или константами. Поэтому в предметной теории не может быть утверждения о "существовании" типа или о наличии у него каких либо свойств (например, свойства "конечности").
Ладно, цитируем учебник (Введение, пункт 7). Цитату с определениями различных свойств у "несуществующих" типов я уже приводил:
http://dxdy.ru/post196244.html#196244.
Б.А.Кушнер писал(а):
Говоря о месте понятия множества в конструктивной математике, следует подчеркнуть его подчинённую, техническую роль; по существу, речь идёт лишь об удобном варианте терминологии. Термины "множество" и "свойство" считаются синонимами; задание множества конструктивных объектов какого-то типа (ниже рассматриваются множества слов в некотором алфавите) состоит в формулировании свойств объектов этого типа, а принадлежность конструктивного объекта множеству означает, что этот объект обладает соответствующим свойством.
Б.А.Кушнер писал(а):
Строгое использование множеств предполагает фиксацию формализованного логико-математического языка (см., например, Шанин [4]), средствами которого формулируются свойства (под свойствами понимаются однопараметрические формулы данного языка). При этом сами множества оказываются конструктивными объектами (словами в некотором алфавите) и, в частности, могут выступать в качестве исходных данных алгорифмов.
Б.А.Кушнер писал(а):
Мы будем использовать обычные теоретико-множественные обозначения. ...
(Здесь объясняется, как определяется подмножество, объединение, пересечение, дополнение, произведение множеств.)
Нормальным называется множество, задаваемое нормальной формулой с одной свободной переменной, то есть, формулой, не содержащей квантора существования и дизъюнкции.
Б.А.Кушнер писал(а):
Основные используемые нами множества (а, следовательно, и соответствующие им переменные) нормальные. Таковы множества натуральных, целых, рациональных и конструктивных действительных чисел, множество всех нормальных алгорифмов в данном алфавите, перечислимые множества, множество конструктивных действительных функций. Так же, как с нормальными множествами, мы будем обращаться с множеством всех алгорифмических операторов, действующих из одного конструктивного метрического пространства в другое.
Вы по-прежнему будете утверждать, что множество натуральных чисел
в конструктивном анализе не существует и не является объектом теории? Или что оно, вопреки своему определению, содержит не все натуральные числа?
А с аксиомой выбора появляются такие странные объекты, как множества, неизмеримые по Лебегу.
Ага. Только отсутствие аксиомы выбора не означает автоматически отсутствие неизмеримых множеств. А совсем без аксиомы выбора континуум может оказаться объединением счётного множества счётных множеств. И где тогда у нас будет мера Лебега?
В теории типов (о которой
epros говорит)
даже не является высказыванием.
epros ничего не говорит ни о какой теории типов. Он просто называет множества типами. И
в конструктивном анализе прекрасно является высказыванием. Откройте книжку Кушнера и посмотрите.
Я также говорю не о теории типов, а о теории множеств ZFC. О том, что множества ZFC можно интерпретировать как ограниченные свойства. И не требовать, чтобы все элементы множества "существовали одновременно" (я не понимаю, как можно было бы сформулировать в ZFC или в конструктивном анализе, что элементы множества "существуют" "одновременно" или "не одновременно").
Так давайте договоримся об определениях. Я понимаю конечность, очевидно, таким же образом, как "финитность" у Кушнера. Тип является конечным, если есть алгоритм, который перечисляет все объекты данного типа и завершается.
Я об этом уже говорил. Определение финитного множества процитировано здесь:
http://dxdy.ru/post196244.html#196244. Я понял причину разногласий, этого мне достаточно.