Применение термина "равномощность" к бесконечным множествам некорректно. Можно говорить определённо только про неравномощные множества (например, множество действительных чисел мощнее натуральных). Но рассматривая бесконечные множества равномощные натуральному множеству, приходится признать что это не равномощность, а неопределённость.
Рассмотрим 2 примера:
1. Существующее правило: Множество натуральных чисел (N) равномощно множеству целых чисел (Z). Т.к.мы можем установить биекцию, т.е. занумеровать числа множества Z числами множества N так, что ни одно число не повторится и все окажутся пронумерованными. Делается это так:
Целые числа: 0, 1, -1, 2, -2,…,+<><>
Натуральные: 1, 2, 3, 4, 5,…,+<><>
Видно что нечётные числа нумеруют ноль и отрицательные, а чётные – положительные. На этом основании делается вывод, что множества равны по мощности.
2. Множество натуральных чисел неравномощно множеству целых чисел.
Запишем целые числа: -<><>, …, -5, -4, -3, -2, -1, 0 , 1, 2, 3, 4, 5,…,+<><>
Запишем натуральные числа: 1, 2, 3, 4, 5,…,+<><>.
Начнем пересчитывать точки одного множества в другое: Начнем с 1.
Целые числа: 1, 2, 3, 4, 5,…,+<><>
Натуральные: 1, 2, 3, 4, 5,…,+<><>
Как видно натуральные числа нумеруют только положительные целые числа, таким образом, отрицательные числа и 0 не могут быть пронумерованы. Ибо какое бы натуральное число мы ни взяли оно уже занято, т.е. оно нумерует число из ряда положительных целых чисел. Таким образом, для чисел -<><>, …, -5, -4, -3, -2, -1, 0 не существует свободных натуральных чисел, которыми можно пронумеровать этот ряд. Что и требовалось доказать.
Вывод: Мы не можем однозначно утверждать равномощны ли множества Z и N, это неопределённость.
Таким образом, биекция НЕОБХОДИМОЕ условие равномощности множеств, но совершенно НЕДОСТАТОЧНОЕ условие равномощности. Для того, чтобы понять почему это так рассмотрим пример с конечными множествами (метод биекции в своё время был применён к бесконечным множествам на основе аналогии с конечными множествами, но как мы увидим был некорректно применён, т.к. нельзя автоматически переносить правила, справедливые для конечных множеств на бесконечные).
Итак, рассмотрим два конечных множества:
в корзине №1 10 бильярдных шаров с разными номерами (скажем от 1 до 10),
в корзине №2 10 бильярдных шаров с разными номерами (скажем от 21 до 30).
По условию задачи, Вы не знаете сколько шаров в корзинах. Чтобы сравнить их количество Вы одновременно достаёте по одному шару из корзин (таким образом применяете метод биекции, т.е. пытаетесь установить биекцию: если количество шаров будет одинаковым, то мощности равномощны; если разное, то мощность одного множества будет больше мощности другого). При этом не важно какие номера стоят на этих двух шарах (например: 4-26, 7-22 и т.п.), в любом случае получится что мощности этих множеств равномощны. Таким образом, для конечных множеств существование хотя бы одного способа биекции однозначно говорит об их равномощности. Но это не выполняется для бесконечных множеств, так как в зависимости от порядка сопоставления элементов, мы получаем противоречащие друг другу результаты: либо мощности множеств равны, либо неравны. Таким образом если существует хотя бы 1 способ, когда биекции не существует, то мы не имеем право однозначно судить о равномощности. Подобно тому, как мы не можем судить о сумме бесконечного ряда чисел, если ряд расходящийся, т.к. сумма зависит от порядка слагаемых.
http://www.proza.ru/2009/01/03/595