2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Наименьшее значение выражения
Сообщение26.02.2009, 15:24 
Дана система:

$\left\{ \begin{array}{l}A=\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \\ a+b=1 \\ a>0,  b>0 \end{array} \right $

Найти наименьшее значение, которое может принимать выражение $A$.
Мой ответ $A_{min}=12,5$
Хотелось бы узнать ваши способы решения и ответы.

 
 
 
 
Сообщение26.02.2009, 15:46 
Аватара пользователя
А выразить $b$ через $a$, подставить и продифференцировать?
А еще проще - обе скобки принимают наименьшее значение в одной и той же точке.
А посложнее $a=0.5-t; \quad b=0.5+t$
Ещё покруче - условным экстремумом через множитель Лагранжа.

 
 
 
 
Сообщение26.02.2009, 15:55 
Аватара пользователя
Можно решать через функцию Лагранжа. Получается что минимиум достигается на середине отрезка. Так что ответ Ваш верен.

 
 
 
 
Сообщение26.02.2009, 16:08 
Можно вообще практически не решать. Функция, очевидно, выпукла, и её единственный глобальный экстремум (1;1) тоже очевиден и находится за пределами области. Горизонтальная и вертикальная стенки отпадают -- там функция уходит на бесконечность. Остаётся только наклонная стенка. А там и вовсе ничего не надо считать -- в силу симметрии задачи и опять же выпуклости минимум может быть только в её середине, т.е. в точке (0.5;0.5).

 
 
 
 
Сообщение26.02.2009, 16:12 
Аватара пользователя
MathCad выдал три минимума:
$a=-0.75487$
$$a=\frac 12$$
$a=1.75487$
Под заданные ограничения подпадает только $$a=\frac 12$$. Для него $A=12,5$

 
 
 
 
Сообщение26.02.2009, 16:35 
Аватара пользователя
а почему тема называется "Наибольшее значение выражения", а мы ищем наименьшее? Нет ли здесь какого-либо покушения на основы?

 
 
 
 
Сообщение26.02.2009, 16:37 
А это потому, что тема -- дискуссионная. Вот вам и повод для дискуссии.

 
 
 
 
Сообщение26.02.2009, 16:44 
Мое решение чисто алгебраическое :)

Существует лемма: $a^2 + b^2 \geqslant \frac{(a+b)^2}{2}$
Тогда справедливо неравенство

$\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \geqslant \frac{(a+1/a+b+1/b)^2}{2}$
$\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \geqslant \frac{(1+\frac{1}{b-b^2})^2}{2}=B$

Чтобы найти $A_{min}$ надо найти $B_{min}$, а для этого надо найти $max$ для $b-b^2$

Рассмотрим функцию $f(b)=-b^2+b$

$f_{max}(b)=f(b_0)=|b_0=\frac{1}{2}|=\frac{1}{4}$
Т.е. $max(b-b^2)=\frac{1}{4}$. Тогда $min\left(\frac{1}{b-b^2}\right)=4$

Подставляем в выражение $B=\frac{(1+\frac{1}{b-b^2})^2}{2}=\frac{(1+4)^2}{2}=12,5$

Расписал как можно подробнее :)

Добавлено спустя 1 минуту 8 секунд:

gris писал(а):
а почему тема называется "Наибольшее значение выражения", а мы ищем наименьшее? Нет ли здесь какого-либо покушения на основы?

Извиняюсь, сейчас исправлю :)

 
 
 
 
Сообщение26.02.2009, 17:01 
Проще всего воспользоваться выпуклостью функции $f(x)=(x+\frac 1x )^2$.
Тогда $f(a)+f(b)\ge 2f(\frac{a+b}{2})=12.5$ как только $a+b=1$.

 
 
 
 
Сообщение26.02.2009, 17:03 
Georgise писал(а):
$\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \geqslant \frac{(1+\frac{1}{b-b^2})^2}{2}=B$

Во-первых, это непонятно откуда взято, а во-вторых -- и неверно. Подставьте $b\approx1$.

 
 
 
 
Сообщение26.02.2009, 21:03 
ewert писал(а):
Georgise писал(а):
$\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \geqslant \frac{(1+\frac{1}{b-b^2})^2}{2}=B$

Во-первых, это непонятно откуда взято, а во-вторых -- и неверно. Подставьте $b\approx1$.


$\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \geqslant \frac{(a+\frac{1}{a}+b+\frac{1}{b})^2}{2}$ - это исходя из того, что неравенство

$a^2 + b^2 \geqslant \frac{(a+b)^2}{2}$ верно при любых $a$ и $b$.

Ну а приведя числитель $(a+\frac{1}{a}+b+\frac{1}{b})^2$ к общему знаменателю и получаем $(1+\frac{1}{b-b^2})^2$

Так что все верно на мой взгляд. И если подставить $b\approx1$ то неравенство выполнится, я проверил :)

 
 
 
 
Сообщение26.02.2009, 21:10 
ну, во-первых, не получаем, а во-вторых, почему Вы решили, что константа плюс два всегда больше плюс бесконечности?...

 
 
 
 
Сообщение26.02.2009, 21:14 
ewert писал(а):
ну, во-первых, не получаем, а во-вторых, почему Вы решили, что константа плюс два всегда больше плюс бесконечности?...


Покажите, где у меня написано что-нибудь наподобие этого, пожалуйста.

 
 
 
 
Сообщение26.02.2009, 21:34 
Ну это ж Вы написали, не так ли?

Georgise писал(а):
$\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \geqslant \frac{(1+\frac{1}{b-b^2})^2}{2}=B$


При $b=1$ получаем слева $(a+{1\over a})^2+2$, а справа -- бесконечность, которая якобы меньше левой части.

 
 
 
 
Сообщение26.02.2009, 21:51 
ewert писал(а):
При $b=1$ получаем слева $(a+{1\over a})^2+2$, а справа -- бесконечность, которая якобы меньше левой части.


Уважаемый:)
В условии есть такая строчка:
$\left\{ \begin{array}{l}a+b=1 \\ a>0,  b>0 \end{array} \right $

Это означает, что область допустимых значений для $a$ и $b$:
$\left\{ \begin{array}{l}0<a<1 \\ 0<b<1\end{array} \right $

Т.е. $b\neq1$ по условию.
А вот если подставить $b\approx1$, например $b=0,(9)$ или просто $b=0,9$, то все получится.

 
 
 [ Сообщений: 18 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group