2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Преобраз. дифф. уравнения n порядка в систему n дифф. ур-ий
Сообщение04.02.2009, 23:59 
Подскажите, пожалуйста, как преобразовать дифф. ур. n-ого порядка в систему из n дифф. ур-ий 1 порядка. Или дайте ссылку на источник. Спасибо.

 
 
 
 
Сообщение05.02.2009, 00:13 
Аватара пользователя
Н.М.Матвеев. Методы интегрирования обыкновенных дифференциальных уравнений. "Высшая школа", Москва, 1967.

Смотрите пункт 112.

 
 
 
 
Сообщение05.02.2009, 08:35 
Стр. 26 на http://u-pereslavl.botik.ru/~trushkov/ode/ode.pdf

 
 
 
 
Сообщение05.02.2009, 15:13 
Спасибо.

 
 
 
 
Сообщение09.02.2009, 17:26 
Прочел. Если я правильно понял, то уравнение $y'''(x)=2y''sin(x)-cos(y')+x-y$ можно преобразовать в систему из трех уравнений:
$\left\{\begin{array}{l}y_{1}'=y_{2}\\y_{2}'=y_{3}\\y_{3}'=2y_{3}sin(x)-cos(y_{2})+x-y_{1}\end{array}\right.$

где $y_{1}:=y(x)$

Всё верно? Или я что-то не так понял. Если правильно, то как дальше решать каждое отдельное уравнение как-то неясно...

 
 
 
 
Сообщение09.02.2009, 18:49 
Всё правильно. А что неясно -- так это хорошо. Как в принципе можно решать уравнения системы по отдельности? Ответ: в принципе никак.

 
 
 
 
Сообщение09.02.2009, 19:50 
Пардон - ошибся формулировкой. Как такую систему решить - подстановкой не получается...
Рассмотрим пример попроще:
$y''=y'+y$ преобразуем в систему:
$y_{1}'=y_{2}$
$y_{2}'=y_{2}+y_{1}$

Я что-то не понимаю как эта система решается...
Да, решаем задачу Коши: даны $y(x_{0})$ и $y'(x_{0})$.

 
 
 
 
Сообщение09.02.2009, 19:59 
Эта система (будучи линейной) стандартно решается записью в матричной форме и выписыванием матричной экспоненты. Но, если нужно именно аналитическое решение (а не какое-нибудь приближённое), то это довольно глупо: исходное уравнение высшего порядка -- объект для исследования более простой, поскольку матрица получается очень специфического вида.

А вот если интересоваться именно приближёнными решениями -- тогда да, векторная запись существенно всё упрощает. Поскольку векторные уравнения первого порядка по своим общим свойствам практически не отличаются от скалярных.

 
 
 
 
Сообщение09.02.2009, 20:22 
Интересует именно приближенное численное решение. То есть составляем обычную матрицу - для данного случая:
$$\left(\begin{array}{ccc}0&1\\1&1\end{array}\right)$$ $$\left(\begin{array}{ccc}y_{1}\\y_{2}\end{array}\right)$$ =$$\left(\begin{array}{ccc}y_{1}'\\y_{2}'\end{array}\right)$$
Так? А можно решить без матричных экспонент?

 
 
 
 
Сообщение09.02.2009, 22:09 
тупо и в лоб. Примените к этой системе какой-нибудь приближённый способ -- там какого-нибудь Рунге-Кутта, или хоть какого-нибудь Адамса.

Ведь формальная запись этих методов никак не связана с размерностью. Просто берёшь обычные формулы и тупо переводишь на векторный язык.

 
 
 
 
Сообщение09.02.2009, 22:55 
То есть, к примеру, используя явный метод Эйлера $y_{i+1}=y_{i}+hf[x_i,y_i]$ получаем:
$y_2=y_1+hy_2$ и используем это в нашей системе, да?

 
 
 
 
Сообщение09.02.2009, 23:07 
у Вас путаница с индексами. К сожалению, тут приходится использовать двухиндексные обозначения, и ничего тут уж не поделаешь. Один индекс должен помечать номер компоненты вектора, и совершенно другой -- номер шага.

 
 
 
 
Сообщение09.02.2009, 23:39 
Вам что надо самому реализовать численное решение? В мат. пакетах это делается очень быстро и просто.

 
 
 
 
Сообщение09.02.2009, 23:42 
смотря в каких. Скажем, в Матлабе это проходит просто на автомате. А вот в Маткаде -- придётся маленько помучиться (почему я Маткада и не знаю, и знать не хочу).

 
 
 
 
Сообщение10.02.2009, 00:18 
ewert писал(а):
смотря в каких. Скажем, в Матлабе это проходит просто на автомате. А вот в Маткаде -- придётся маленько помучиться (почему я Маткада и не знаю, и знать не хочу).


Да, я имела ввиду Mathematica или Matlab, в них мне приходилось решать системы численно и совсем это не сложно.

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group