s4kkkkДля линии без омических потерь есть численные методы, которые считают практически без ошибок (ошибка не накапливается). Например, вот линия (разомкнутая на свободном конце справа), к которой слева подключают источник синусоидального напряжения (он подключен постоянно и дает непрерывный синус):

Интересно, что через четыре прохода волны вдоль линии все приходит к начальному состоянию. Еще можно видеть, что на правом конце сдвиг фаз между током и напряжением всегда равен

(нет потока энергии через правую границу), а на левом конце (где источник) первую половину времени этот сдвиг фаз равен нулю (накачивание линии энергией волны из источника), а вторую половину -

(энергия волны возвращается в источник).
Это только при длине линии кратной половине волны...При других длинах всё будет кардинально иначе.