2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Задача 3854 Демидович
Сообщение22.11.2024, 03:51 


14/11/21
62
$$ \int_{a}^{b} \frac{( x-a )^{m} ( b-x )^{n}} {( x+c )^{m+n+2}} : d x \qquad( 0 < a < b, : c > 0 ) $$

$$ x = a + (b-a)t, \quad dx = (b-a)dt. $$

$$ \int_{0}^{1} \frac{((b-a)t)^{m} ((b-a)(1-t))^{n}}{(a + (b-a)t + c)^{m+n+2}} (b-a) dt. $$

Понимаю как привести к такому виду, но не знаю, что дальше делать со знаменателем

Помогите, пожалуйста

 Профиль  
                  
 
 Re: Задача 3854 Демидович
Сообщение22.11.2024, 04:57 
Заслуженный участник


16/02/13
4195
Владивосток
Ну хоть $b-a$ за скобки вынесите. А то и не постесняйтесь взять интеграл для двух-трёх-пяти малых значений $m,n$. Мож, чего и прояснится.

 Профиль  
                  
 
 Posted automatically
Сообщение22.11.2024, 12:04 
Админ форума


02/02/19
2512
 i  Тема перемещена из форума «Околонаучный софт» в форум «Помогите решить / разобраться (М)»
Причина переноса: тематика.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: dgwuqtj, mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group