2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 слабая сходимость и сходимость п.в.
Сообщение18.11.2024, 00:07 


21/12/16
1117
Пусть $B$ -- рефлексивное банахово пространство.

Через $X$ обозначим измеримое пространство с мерой $\mu$.

Доказать теорему:

Предположим, что последовательность $\{f_n\}\subset L^p(X,B),\quad 1<p<\infty$ такова, что

1) $\sup_n\|f_n\|_{L^p(X,B)}=C<\infty,$

2) $f_n\to 0$ -- почти всюду.

Тогда $f_n\to 0$ слабо в $L^p(X,B)$.

 Профиль  
                  
 
 Re: слабая сходимость и сходимость п.в.
Сообщение18.11.2024, 09:29 
Заслуженный участник


13/12/05
4645
А то, что $(L^p(X, B))^*=L^q(X, B^*) $ считается известным, или это часть задачи? (Это вообще верно?)

 Профиль  
                  
 
 Re: слабая сходимость и сходимость п.в.
Сообщение18.11.2024, 12:50 


21/12/16
1117
Верно, если $B$ сепарабельное. Забыл написать.

 Профиль  
                  
 
 Re: слабая сходимость и сходимость п.в.
Сообщение19.11.2024, 11:15 


21/12/16
1117
решение https://dropmefiles.com/hjRgw

 Профиль  
                  
 
 Re: слабая сходимость и сходимость п.в.
Сообщение20.11.2024, 08:36 
Заслуженный участник


13/12/05
4645
Мое решение. Пусть $\varphi\in L^q (X,B^*)$, $\frac1p+\frac 1q=1$. Для любого $\varepsilon>0$ выберем множество конечной меры $A\subset X$ такое, что $\int_{X\setminus A}\|\varphi(x)\|^qd\mu<\left(\frac{\varepsilon}{C}\right)^q$. Тогда
$$
\int_{X\setminus A}|\langle\varphi(x),f_n(x)\rangle|d\mu\leqslant \int_{X\setminus A}\|\varphi(x)\|\cdot\|f_n(x)\|d\mu\leqslant 
$$
$$
\leqslant\left(\int_{X\setminus A}\|\varphi(x)\|^qd\mu\right)^{1/q} \left(\int_{X\setminus A}\|f_n(x)\|^pd\mu\right)^{1/p}\leqslant\frac{\varepsilon}C\,\|f_n\|\leqslant\varepsilon
$$
Если мы покажем, что $\int_A |\langle\varphi(x),f_n(x)\rangle| d\mu\to 0$ при $n\to\infty$, то $\langle\varphi,f_n\rangle=\int_X\langle\varphi(x),f_n(x)\rangle d\mu\to 0$ при $n\to\infty$.
Действительно, если существует $N=N(\varepsilon)$ такое, что при всех $n>N$ выполнено неравенство $\int_A |\langle\varphi(x),f_n(x)\rangle| d\mu<\varepsilon$, то при всех $n>N$ имеем
$$
|\langle\varphi,f_n\rangle|\leqslant\int_{X\setminus A}|\langle\varphi(x),f_n(x)\rangle| d\mu+\int_A|\langle\varphi(x),f_n(x)\rangle| d\mu
<\varepsilon+\varepsilon=2\varepsilon.$$
Стремление к нулю $\int_A |\langle\varphi(x),f_n(x)\rangle| d\mu\to 0$ следует из теоремы Витали о предельном переходе под знаком интеграла: подынтегральная функция по условию почти всюду стремится к нулю и последовательность $\{|\langle\varphi(x),f_n(x)\rangle|\}_{n=1}^\infty$ имеет равностепеннно абсолютно непрерывные интегралы, т.е. для любого $\varepsilon>0$ найдётся $\delta>0$ такое, что для любого измеримого множества $e\subset A$ из $\mu(e)<\delta$ следует $\int_e |\langle\varphi(x),f_n(x)\rangle|d\mu<\varepsilon$:
$$
\int_e |\langle\varphi(x),f_n(x)\rangle|d\mu\leqslant \left(\int_e\|\varphi(x)\|^qd\mu\right)^{1/q}\left(\int_e\|f_n(x)\|^pd\mu\right)^{1/p}\leqslant C\left(\int_e\|\varphi(x)\|^qd\mu\right)^{1/q}<\varepsilon.
$$
по свойству абсолютной непрерывности интеграла $\int_A\|\varphi(x)\|^qd\mu<\infty$.
Padawan в сообщении #358364 писал(а):
Теорема Д. Витали. Пусть мера $\mu$ конечна. Если последовательность интегрируемых функций $\{f_n\}$ имеет равностепенно абсолютно непрерывные интегралы (т.е. для любого $\varepsilon>0$ существует $\delta>0$ такое, что если $\mu (e)<\delta$, то $\left|\int\limits_e f_n\, d\mu\right|<\varepsilon$ для всех $n=1,2,\ldots$), и $f_n\to F$ по мере, то $F$ интегрируема и $\lim\limits_{n\to\infty}\int f_n\, d\mu=\int F\,  d\mu$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group