2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 13:40 
$$
\sum_{n=1}^{\infty} \frac{1} {( 3 n+1 ) ( 3 n )} 
$$
Вот такой ряд.

Я понимаю, что он равен:
$$\int_{0}^{\infty} \frac{\operatorname{l n} x} {e^{x}} \, d x + 
\int_{0}^{1} \frac{(1-x^{1/3})\mathrm{d} x} {1-x} 
$$

По формуле для дигамма функции:
$$
\psi( z+1 ) ~=~-\gamma+\int_{0}^{1} ~ ~ \frac{1-x^{z}} {1-x} ~ d x 
$$


А дальше у меня пока нет идей, как интеграл посчитать второй.

Подскажите, пожалуйста

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 14:10 
Аватара пользователя
DariaRychenkova в сообщении #1662015 писал(а):
$$
\sum_{n=0}^{\infty} \frac{1} {( 3 n+1 ) ( 3 n )} 
$$
Вот
А то, что при $n=0$ беда полная Вас не смущает?

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 14:19 
Аватара пользователя
С единицы, наверное.

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 14:33 
Утундрий

Да
Точно

-- 19.11.2024, 14:35 --

amon

Исправила

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 14:44 
Аватара пользователя
У меня получилось, что эта сумма равна
$$
-\frac 1 3 \int_{0}^{1} \ln (1-x^3) d x 
$$

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 14:53 
$$ \sum_{n=1}^{\infty} \left( \frac{1}{3n} - \frac{1}{3n+1} \right). $$








$$ \sum_{n=0}^{\infty} \frac{1}{3n+1} = \sum_{n=0}^{\infty} \int_{0}^{1} x^{3n} , dx = \int_{0}^{1} \sum_{n=0}^{\infty} x^{3n} , dx = \int_{0}^{1} \frac{1}{1-x^3} , dx, $$

$$ \sum_{n=0}^{\infty} x^{3n} = \frac{1}{1-x^3}. $$

$$ \int_{0}^{1} \frac{1}{1-x^3} , dx. $$

$$ x^3 = t \implies dx = \frac{1}{3} t^{-2/3} , dt. $$
Пределы интегрирования будут от $0$ до $1$:
$$ \int_0^1 \frac{1}{1-t} \cdot \frac{1}{3} t^{-2/3} , dt = \frac{1}{3} \int_0^1 \frac{t^{-2/3}}{1-t} , dt. $$

$$ B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} , dt. $$

$$ B(\frac{1}{3}, \frac{2}{3}) = \frac{\Gamma(\frac{1}{3}) \Gamma(\frac{2}{3})}{\Gamma(1)}, $$

$$ \sum_{n=1}^{\infty} {\frac{1} {( 3 n+1 ) ( 3 n )}} = B\left(\frac{1}{3}, \frac{2}{3}\right) = \frac{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)}{1}. $$


$$ \Gamma\left(\frac{2}{3}\right) = \frac{\Gamma\left(\frac{1}{3}\right)}{\frac{1}{3}}. $$


$$ \sum_{n=1}^{\infty} {\frac{1} {( 3 n+1 ) ( 3 n )}} = \frac{1}{3} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right). $$



$$ \sum_{n=1}^{\infty} {\frac{1} {( 3 n+1 ) ( 3 n )}} = \frac{1}{3} \cdot \Gamma\left(\frac{1}{3}\right) \cdot \Gamma\left(\frac{2}{3}\right). $$

-- 19.11.2024, 14:56 --

Утундрий

Похоже на Ваш ответ

-- 19.11.2024, 14:57 --

Коэффициент 1/3 есть :D :facepalm: :mrgreen:

-- 19.11.2024, 15:02 --

Если как у меня, то дальше тригонометрическая формула сработает

-- 19.11.2024, 15:02 --

Если как у меня, то дальше тригонометрическая формула сработает

-- 19.11.2024, 15:05 --

$$
\frac{2 \pi\sqrt{3}} {9} 
$$

Где я ошибаюсь?

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 16:08 
Аватара пользователя
DariaRychenkova в сообщении #1662032 писал(а):
Где я ошибаюсь?
Здесь:
DariaRychenkova в сообщении #1662032 писал(а):
$$ \sum_{n=1}^{\infty} \left( \frac{1}{3n} - \frac{1}{3n+1} \right). $$
Разбивать сходящуюся сумму в разность расходящихся — плохая идея.

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 19:45 
Утундрий в сообщении #1662042 писал(а):
Разбивать сходящуюся сумму в разность расходящихся — плохая идея.
Да нормальная идея, просто нужно работать с частичными суммами (асимптотика их известна).

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 19:51 
Аватара пользователя
Хотя, это может быть такое требование к решению...

 
 
 
 Re: Помогите вычислить сумму ряда с помощью гамма функции
Сообщение19.11.2024, 20:14 
Собственно, все уже подсчитано: https://en.wikipedia.org/wiki/Digamma_function (раздел "Evaluation of sums of rational functions").

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group