Сделал
конвертер, используя пример из первого сообщения. Точнее покомандовал, чтобы ИИ сделал за меня.
Получилось так:
Theorem 6.7Taylor's Theorem with RemainderLet
be a function that can be differentiated
times on an interval
containing the real number
. Let
be the
-th Taylor polynomial of
at
and let
be the
-th remainder. Then for each
in the interval
, there exists a real number
between
and
such that
If there exists a real number
such that
for all
, then
for all
in
.
ProofFix a point
and introduce the function
such that
We claim that
satisfies the criteria of Rolle's theorem. Since
is a polynomial function (in
), it is a differentiable function. Also,
is zero at
and
because