да не в жонглировании дело, дело в том, что множество можно нарисовать, а событие-- нет. А мера -- это площадь кляксы на рисунке.
Да ведь это все равно делается. С самого начала. Когда вводится терминология ТВ. Что такое произведения событий, сумма событий, и т.д. И все рисуется, мне кажется, для всех специальностей, сперва не заморачиваясь, можно это рисовать или нет. И в зависимости от восприимчивости и бэкграунда потока, говорится, что вероятность это мера, посмотрите, все свойства выполнены, мера по определению. А если бэкграунд не позволяет таких слов, то совершенно спокойно воспринимаются доказательства "с помощью картинок" простейших свойств вероятности, например, формулы для вероятности суммы и т.п.
Может, я и неправильно делаю, но даже для "совсем прикладников" (математиков, но с сильно урезанной программой, есть такие специальности) я рано или поздно говорю слово мера. И чтобы оно нормально воспринималось, говорю, что на плоскости привычная вам мера - площадь, а в пространстве - сами угадайте. А тут - вероятность. Она особенная, потому что счетно-аддитивная (да, мы не ищем легких путей) и нормированная. И так единожды слово мера сказав, я потом его регулярно повторяю, - мы же помним, что вероятность это мера, да? Тогда, когда это к случаю.
И без картинок никуда, как иначе. Хотя это все дай бог если хоть кому пригодится - доказательства народ обычно в топку. Дай бог, если задачи решают.
-- 24.07.2024, 23:37 -- На понятие измеримого множества она решила даже не замахиваться.
Но это не мешает ей приводить рис. 3.2.2 в пояснение к формуле 3.2.3.