Alex Krыlovне нужно вешать людям "лапшу" на уши, Fortran не только, и не столько низкоуровневый, сколько устаревший и малораспространённый, к тому же в современных вариантах он вполне себе поддерживает линейную алгебру и реализовать решение задачи ТС в нём не так уж и сложно. Только какой в этом смысл, если большинство людей с ним не знакомы и скорее всего он никогда им не понадобится.
Тоже самое, хотя и в меньшей степени, относится к matlab, его сейчас очень мало кто использует. Кто без особой нужды будет устанавливать 20Гб дистрибутивы, которые к тому же далеко не бесплатны, или рыскать по сомнительным online-ресурсам, при наличии более удобной альтернативы в виде python. А вы ещё предлагаете дополнительно к matlab скачивать и устанавливать какую то сомнительную приблуду, которая скорее всего больше никогда и не понадобится. В том то и дело, что из-за этого ваши примеры попросту никто не будет проверять. А python сейчас есть очень у многих, если не у всех.
О какой наглядности вообще речь? Если под ней понимать раскрытие сути задачи, а не рекламу Yalmip. Я же показал, что абсолютно ту же самую систему ограничений, и тот же функционал как у вас, принимает функция linalg, входящая в самые допотопные версии matlab. Какие тогда дополнительные удобства в понимании задачи даёт Yalmip, кроме того, что объявляет о своём существовании? Может наоборот для абстрагирования от сути задачи? Но в таком случае зачем она вообще нужна?
К тому же и ЗЛП вы сформулировали, ни то что бы не правильно, но довольно криво. МНМ традиционно формулируется так:


это и нагляднее, и компактнее, и требует для решения гораздо меньше итераций.