Да, уже очевидно, что я неправ((( сложение уравнений это неравносильный переход. Вот бы еще это писали в школьных учебниках за 7-й класс. А не только сам метод излагали.
А про какой учебник речь идёт? Если взять стандартный школьный учебник для 7-го класса Мордковича, то там такая терминология не употребляется и неуместна (ИМХО). Учебник написан для среднестатистического российского школьника. Вряд ли он в 7-мм классе (а это возраст 12-13 лет) поймёт такую терминологию.
Более того, системы нелинейных уравнений в этом учебнике вообще не рассматриваются. Если есть интерес к этому, то возьмите учебник для более старшего класса. Либо пособие для абитуриентов.
В учебнике Мордковича рассматриваются системы двух линейных уравнений с двумя неизвестными. Причём рассматриваются на начальном интуитивном уровне (в виде рецептов) без должного обоснования. Например, сложим (вычтем) два уравнения. Одно неизвестное исчезнет. Найдём второе и подставим его в одно из начальных уравнений. Оно всё правильно. Только почему это правильно и почему это работает не объясняется. И считать, что такой рецепт подойдёт как универсальный для систем нелинейных уравнений, было бы глупо.
имеет три очевидных решения:
И как получены эти три "очевидных" решения. Я решал примерно так. От исходной системе перешёл к новой , в которой первое уравнение будет суммой исходной системы. А второе уравнение - разностью. И хорошо бы понять, что это равносильный переход. В полученной системе каждое уравнение разлагается на два множителя. Далее нужно понять что наша система равносильна совокупности четырёх простейших систем, каждая из которых легко решается. Это я всё к чему, что надо не просто методы из учебника применять, но и понимать, когда они работают и почему. И тогда вопрос, вынесенный в первый пост, не должен возникнуть.
Поэтому на таком уровне пишут проще - типа, надо в конце проверить, а не появились ли посторонние корни?
Нет, конечно, так не пишут.
Я имел в виду не то, что пишут при решении подобного типа систем в учебнике для 7-го класса (там вообще такие системы не рассматриваются), а вообще, какой язык уместен в таких учебниках. Например, в учебнике Мерзляка (стр.19) как раз что-то похожее - в конце необходимо проверить, удовлетворяет ли полученное решение смыслу задачи или нет (правда для одного уравнения).