2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Изменения вер-ти успеха в испытаниях Бернулли
Сообщение02.06.2024, 20:39 


02/04/13
294
В онлайне непрерывно происходят испытания Бернулли (показ рекламы – ипытание, клик – успех). Цель – как можно раньше задетектировать изменение (факт и величину) вероятности успеха $p$ (CTR). $p \sim 0.001$.
Вижу 2 случая (сильно упрщённых, но хотя бы с ними разобраться для начала):
1) $p$ может меняться непрерывно и достаточно медленно;
2) $p$ кусочно-постоянна, то есть от последнего изменения до последющего $p$ неизменна. Про "время жизни" $p$ нам ничего не известно.

Вопрос такой. Имеются ли какие-то уже разработанные методы для решения данной задачи?
Мои размышления относительно случая 2 такие (мне кажется, этот случай проще).
Давайте строить 2 доверетиельных интервала для $p$: один на показах с последнего задетектированного изменения $p$, второй на поседних $N$ показах ($N$ подбирается исходя из уровня значимости и $|\Delta p|$, который мы хотим детектировать). Но тут сразу видна проблема. Если $|\Delta p|$ слишком большое, то это станет понятно задолго до $N$ показов. Значит, нужно считать доверительные интервалы для $p$ для последних $10, 11, ..., N$ испытаний. То есть доверительных интервалов у нас получается много. И вот тут возникает проблема как интерпертировать набор этих интервалов. Они могут иметь всевозможные паттерны перекрытий. И вот с этим проблема.
Из доверительных интервалов для вероятности успеха думаю использовать Wilson Score interval. Его рекомендуют использовать в этой статье – Confidence Intervals for the Binomial Proportion: A Comparison of Four Methods.

 Профиль  
                  
 
 Re: Изменения вер-ти успеха в испытаниях Бернулли
Сообщение02.06.2024, 21:22 


17/10/16
4967
melnikoff
Ох, не желал бы я чаще кликать на рекламу. Видимо, на это тут задача направлена.

 Профиль  
                  
 
 Re: Изменения вер-ти успеха в испытаниях Бернулли
Сообщение02.06.2024, 21:34 


10/03/16
4444
Aeroport
sergey zhukov в сообщении #1641106 писал(а):
не желал бы я чаще кликать на рекламу. Видимо, на это тут задача направлена.


Задача изменить не кликеров, а рекламу, чтоб на нее чаще кликали те же самые кликеры. И это хорошо: не можешь уничтожить - возглавь улучшь.

 Профиль  
                  
 
 Re: Изменения вер-ти успеха в испытаниях Бернулли
Сообщение02.06.2024, 22:43 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
Это называется задача о разладке. Этим много занимался академик А.Н.Ширяев.

 Профиль  
                  
 
 Re: Изменения вер-ти успеха в испытаниях Бернулли
Сообщение04.06.2024, 22:23 


04/06/24

14
alisa-lebovski
Может в самом деле ИИ радикально ускорит обнаружение?

 Профиль  
                  
 
 Re: Изменения вер-ти успеха в испытаниях Бернулли
Сообщение11.06.2024, 07:51 


02/04/13
294
alisa-lebovski, спасибо за ответ.
Понял, что мне нужна "разладка биномиального процесса". Однако, поиск на эту тему не дал результатов.
Хотя, мне казалось, что такое должно уже было быть реализовано для практиков – на python, например.
Можете подсказать где искать
1) результаты по этой теме;
2) реализацию на любом ЯП ?

 Профиль  
                  
 
 Re: Изменения вер-ти успеха в испытаниях Бернулли
Сообщение11.06.2024, 09:21 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
melnikoff, я к сожалению, не знакома подробнее с этой темой. Поиском находятся статьи и книги про задачу о разладке. Обычно действительно рассматривают непрерывные процессы. Однако если у Вас речь идет о больших числах испытаний Бернулли (порядка сотен), можно приблизить это непрерывным броуновским движением и использовать соответствующую теорию.

 Профиль  
                  
 
 Re: Изменения вер-ти успеха в испытаниях Бернулли
Сообщение11.06.2024, 11:28 


02/04/13
294
* Вместо "разладка биномиального процесса" нужно читать "разладка процесса Бернулли".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: MoonWatcher


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group