Тут еще вот что можно сказать... Когда речь идет о радиотехнических приложениях, то, как известно, основная форма представления низкочастотного сигнала - это комплекснозначное представление (
baseband signal в англоязычной литературе).
И соответственно аргументами оптимизируемых целевых функций при этом являются комплекснозначные величины - комплекснозначные векторы (а в примере выше обычные квадратичные формы заменяются
эрмитовыми квадратичными формами). Естественно, что при этом сама целевая функция по прежнему остается вещественнозначной! Т.е. перед нами вещественнозначная функция комплекснозначного аргумента:
. Но эту функцию можно рассматривать и как вещественнозначную функцию вещественнозначных аргументов - вещественных и мнимых частей изначального комплекснозначного вектора:
. Ограничения могут быть тоже изначально сформулированы в комплекснозначном виде. И естественно одно комплекснозначное ограничение эквивалентно двум вещественнозначным (относительно мнимых и вещественных частей исходного). Т.е. надо понимать, что оптимизационная задача, в которой фигурируют комлекснозначные аргументы и комплекснозначные ограничения - это на самом деле оптимизационная задача с вещественнозначными аргументами и вещественнозначными ограничениямми!
Однако!!!! Однако, ввиду удобства целесообразней все же работать с комплекснозначными агрументами и ограничениями (помня, что на самом деле речь идет о вещественнозначных аргументах и ограничениях)! Для этого необходимо выработать некий
ФОРМАЛИЗМ, который бы делал комплекснозначное представление (и все манипуляции с комплекснозначными величинами) эквивалентным вещественнозначному. Этот формализм естественно уже давно выработан и состоит из двух ингредиентов:
1)
Исчисление Виртингера [1]
2) Небольшая модификация в методе множителей Лагранжа для инкорпорирования (корректным образом) комплекснозначных ограничений.
Целевая функция, будучи вещественнозначной функцией комплекснозначного аргумента, является функцией НЕГОЛОМОРФНОЙ, т.е. в смысле
Коши-Римана недифференцируемой, т.е. обычная "комплексная производная" тут вообще не имеет никакого смысла. А если целевую функцию рассматривать, как вещественнозначную функцию вещественнозначных аргументов (вещественных и мнимых частей) и дифференцировать по ним (по вещественным и мнимым частям), то такие производные имеют обычный смысл (смысл обычных частных производных). Так вот, исчисление Виртингера - это по сути формализм, позволяющий (формальным образом) вычислять эти обычные частные производные (по вещественным и мнимым частям), но при этом оставаясь в рамках удобного комплекснозначного представления и оперируя комплекснозначными аргументами. Если
и имеется функция
, то
пара производных Виртингера определяется следующим образом:
Обратите внимание, как связаны обычные частные производные, берущиеся по вещественной и мнимой частям, с производными Виртингера. Для многомерного случая все аналогично. И что еще из всего этого следует? А следует из всего сказанного то, что
НЕОБХОДИМОЕ УСЛОВИЕ ЛОКАЛЬНОГО ЭКСТРЕМУМА может быть записано как равенство нулю одной из двух (любой на выбор) производных Виртингера! В многомерном случае - одного из двух градиентов (на выбор). Но обычно предпочитают
, чтобы иметь в итоге дело с выражениями относительно обычных
, а не комплексно сопряженных
величин.
ПримерЕсли
, то для (формального) вычисления
переменная
принимается константой, не зависящей от
, и дальше производная вычисляется по обычным правилам (как будто
обычная вещественная переменная):
. Аналогично
. В этом и состоит суть и удобство формализма.
Осталось слегка модифицировать метод множителей Лагранжа. Рассмотрим для примера оптимизационную задачу с одним комплекснозначным ограничением:
C учетом того, что одно комплекснозначное ограничение эквивалентно двум вещественным, (стандартная) функция Лагранжа запишется в виде:
, где
В последней строке множитель
можно запихнуть в
, т.е. в итоге иметь дело с выражениями вида
, но это как говорится "на вкус и цвет". Собственно говоря, мы привели функцию Лагранжа к виду, пригодному для применения исчисления Виртингера и записи необходимых условий экстремума:
В случае нескольких ограничений все аналогично!
1.
Ken Kreutz-DelgadoThe Complex Gradient Operator and the CR-Calculushttps://arxiv.org/abs/0906.4835