На днях просматривал новые работы и наткнулся на статью [1]. Авторы доказали глобальное существование решения в приличном пространстве для двумерного Навье-Стокса (с шумом). Монстры какие-то, наверное, на Филдса тянут - по крайней мере, для меня, как любителя, впечатление такое. Но кое-что меня смутило. Во введении записано:
Цитата:
In our setting, even for smooth initial data, the
norm of the solution is infinite at any positive time: this motivates our division of scales, so that our efforts concentrate towards establishing an energy estimate for the large scale component of the solution.
Это что за чудо-юдо?! Правильно ли я понимаю, что энергия решения всегда остается бесконечной? В таком случае имеет ли какое-либо отношение работа к жизни нашей грешной или она всё о делах небесных? Я клоню к тому, что порядочные жидкости, наверное, имеют все-таки конечную (кинетическую) энергию, и непонятно, какой смысл имеют решения с бесконечной энергией... Разве что они по Сансаре крутятся...
Прошу, проясните несведущему этот (небольшой?) момент.
1. Hairer M., Rosati T. Global existence for perturbations of the 2D stochastic Navier–Stokes equations with space-time white noise // Annals of PDE. – 2024. – Т. 10. – №. 1. – С. 3.