2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Закраска
Сообщение27.12.2023, 23:49 


02/07/23
118
Можно ли закрасить некоторые клетки квадрата $100\times 100$ таким образом, чтобы в любом квадрате $7\times7$ было ровно 25 закрашенный клеток, а в любом прямоугольнике $6\times8$ было ровно 24 закрашенные клетки?

 Профиль  
                  
 
 Re: Закраска
Сообщение28.12.2023, 00:01 
Аватара пользователя


01/11/14
2028
Principality of Galilee
Leeb
А прямоугольник $ 6\times 8$ вертикальный или горизонтальный? Или можно рассматривать и тот, и другой?

 Профиль  
                  
 
 Re: Закраска
Сообщение28.12.2023, 00:13 


02/07/23
118
Gagarin1968
Да, оба, и вертикальный, и горизонтальный.

 Профиль  
                  
 
 Re: Закраска
Сообщение28.12.2023, 02:10 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora

(Решение)

Возьмём квадрат $14\times 14$. Его можно разбить на $4$ квадрата $7\times 7$, значит, в нём $100$ закрашенных клеток. Его также можно разбить на $4$ прямоугольника $8\times 6$ (в совокупности имеют $96$ закрашенных клеток) и центральный «глазок» $2\times 2$, как на картинке. Значит, все клетки «глазка» закрашены.
Изображение
Двигая эту конструкцию и всё время закрашивая глазок, легко получим полностью закрашенный квадрат $7\times 7$, противоречащий условию.

 Профиль  
                  
 
 Re: Закраска
Сообщение28.12.2023, 13:55 


02/07/23
118
svv в сообщении #1624131 писал(а):

(Решение)

Возьмём квадрат $14\times 14$. Его можно разбить на $4$ квадрата $7\times 7$, значит, в нём $100$ закрашенных клеток. Его также можно разбить на $4$ прямоугольника $8\times 6$ (в совокупности имеют $96$ закрашенных клеток) и центральный «глазок» $2\times 2$, как на картинке. Значит, все клетки «глазка» закрашены.
Изображение
Двигая эту конструкцию и всё время закрашивая глазок, легко получим полностью закрашенный квадрат $7\times 7$, противоречащий условию.

Должен признать, задача вышла так себе, а у вас очень хорошее решение. У меня хуже и вообще на строгое не тянет:
Предположим, закраска существует. Рассмотрим квадрат $49\times 49$ и в нем подквадрат $48\times48$. В большем должно быть ровно $1225$ заражённых клеток, в меньшем - $1152$. Значит, в уголке 73 закрашенные клетки. Поскольку это верно для любого квадрата $49\times49$, то в любой полоске $1\times 49$ должно быть не менее 36 закрашенных клеток. Но тогда квадрат $98\times 98$ с одной стороны, имеет $4900$ клеток, а с другой - не менее $98\times98/49 \times 36 = 7056$ клеток, откуда противоречие.

 Профиль  
                  
 
 Re: Закраска
Сообщение28.12.2023, 16:23 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Leeb, задача приятная, спасибо. :-)

 Профиль  
                  
 
 Re: Закраска
Сообщение29.12.2023, 09:18 
Заслуженный участник
Аватара пользователя


23/08/07
5502
Нов-ск
Можно ли закрасить некоторые клетки прямоугольника $42\times 56$ таким образом, чтобы в любом квадрате $7\times7$ было ровно 25 закрашенный клеток, а в любом прямоугольнике $6\times8$ было ровно 24 закрашенные клетки?

 Профиль  
                  
 
 Re: Закраска
Сообщение31.12.2023, 12:22 


02/04/18
246
Но разве svv не доказал только что, что в таком прямоугольнике неизбежно должна быть полностью закрашенная область размера 30 на 44?

 Профиль  
                  
 
 Re: Закраска
Сообщение31.12.2023, 16:48 
Заслуженный участник
Аватара пользователя


23/08/07
5502
Нов-ск
Dendr в сообщении #1624552 писал(а):
Но разве svv не доказал только что, что в таком прямоугольнике неизбежно должна быть полностью закрашенная область размера 30 на 44?
То было моё решение, а не вопрос.
(Число закрашенных в $42 \times 56$ можно найти разными способами.)

 Профиль  
                  
 
 Re: Закраска
Сообщение31.12.2023, 21:01 


02/04/18
246
TOTAL в сообщении #1624578 писал(а):
То было моё решение, а не вопрос.

О. Вот теперь дошло. Так еще изящнее.

И это натолкнуло меня на другой вопрос - а существуют ли вообще доски, которые можно раскрасить согласно условию? Разумеется, должна присутствовать хотя бы одна квадратная область и одна прямоугольная. И если они есть, то сколько?

Ответ на первый вопрос - конечно, да. Наименьшую сетку, $7\times8$, можно раскрасить, например, так: все краевые клетки, и еще шесть (неважно какие) в середине доски.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group