2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 08:37 


02/01/23
76
Вот, к примеру:
Доказать, что из $A\subset B$ следует, что $A\cap B=A$.
И подобное.
Хочется просто сказать: "Сие очевидно!" - и идти дальше. Но, кажется, как-то некорректно так поступать.
Спасибо.

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 08:52 
Заслуженный участник
Аватара пользователя


18/09/14
4290
Можно доказать, используя функцию принадлежности элемента множеству.
Можно через аксиомы булевой алгебры.

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 09:01 


01/03/18
50
Есть пара книжек на русском на эту тему:
- Купиллари "Математика - это просто! Доказательства"
- Веллеман "Искусство доказательства в математике"

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 09:31 
Заслуженный участник
Аватара пользователя


26/01/14
4654
WinterPrimat в сообщении #1592835 писал(а):
Доказать, что из $A\subset B$ следует, что $A\cap B=A$.
Использовать определения.
$A\subset B$ по определению подмножества означает $\forall x\in A,\,x\in B$.
$M=N$ по определению равенства множеств означает, что $\forall x\in M,\,x\in N$ и $\forall x\in N,\,x\in M$.
$x\in A\cap B$ по определению пересечения множеств означает, что $x\in A$ и $x\in B$.
Расписать по этим определениям, что дано, что надо доказать. И попробовать получить из первого второе, не обращаясь к наглядным соображениям.
WinterPrimat в сообщении #1592835 писал(а):
Хочется просто сказать: "Сие очевидно!"
Очевидно, если представлять себе эти множества $A$ и $B$. А если не представлять, а просто смотреть на формулы - не очевидно. Значит, надо доказывать.

Существуют ли на плоскости три непересекающихся множества с общей границей (одна и та же граница у всех трёх множеств)? Из наглядных соображений кажется - тоже "очевидно", что нет. Однако же существуют.

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 12:59 


30/03/20
370
Mikhail_K в сообщении #1592842 писал(а):
Существуют ли на плоскости три непересекающихся множества с общей границей (одна и та же граница у всех трёх множеств)? Из наглядных соображений кажется - тоже "очевидно", что нет. Однако же существуют.

А это как?

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 13:12 
Заслуженный участник
Аватара пользователя


18/09/14
4290
Cuprum2020 в сообщении #1592865 писал(а):
А это как?

Мне приходит в голову такой пример. Пусть первое множество состоит из точек, у которых обе координаты рациональны. Второе - из точек, у которых обе координаты иррациональны. Третье множество - из всех остальных точек плоскости. Тогда граница любого из этих трёх множеств - вся плоскость.
Mikhail_K, Вы что-нибудь подобное имели в виду?

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 13:14 
Заслуженный участник
Аватара пользователя


26/01/14
4654
Mikhail_K в сообщении #1592842 писал(а):
Существуют ли на плоскости три непересекающихся множества с общей границей (одна и та же граница у всех трёх множеств)? Из наглядных соображений кажется - тоже "очевидно", что нет. Однако же существуют.
Cuprum2020 в сообщении #1592865 писал(а):
А это как?
Строго говоря, этому условию удовлетворяет даже такой очень простой пример: окружность, множество точек внутри этой окружности и множество точек вне её. У всех трёх множеств граница - окружность.

Но существуют три (и даже любое конечное число) открытых связных непересекающихся множеств на плоскости с общей границей. Здесь пример будет выглядеть уже достаточно сложно (окружность вот не является открытым множеством). Погуглите про "озёра Вады".

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 13:48 
Заслуженный участник
Аватара пользователя


20/08/14
8127
WinterPrimat в сообщении #1592835 писал(а):
Хочется просто сказать: "Сие очевидно!" - и идти дальше. Но, кажется, как-то некорректно так поступать.
Еще как некорректно. Так можно нарваться на утверждение, которое кажется очевидным, но чрезвычайно трудно доказывается, вроде теоремы Жордана. А то и вовсе на неверное утверждение. "Очевидно" же, что шар нельзя разбить на части так, чтобы из этих частей сложились два таких же шара!

В математике свое понимание очевидности. Очевидно то, что легко доказать. Остальное только кажется очевидным.

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 14:02 


30/03/20
370
Anton_Peplov в сообщении #1592875 писал(а):
"Очевидно" же, что шар нельзя разбить на части так, чтобы из этих частей сложились два таких же шара!

Ну, в реальном мире это и правда невозможно

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 14:04 


23/05/19
963
Cuprum2020 в сообщении #1592879 писал(а):
Ну, в реальном мире это и правда невозможно

А в реальном мире и шаров не существует:)

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 14:11 


30/03/20
370
Dedekind в сообщении #1592880 писал(а):
А в реальном мире и шаров не существует:)

А вот эти два шара они останутся "полноценными" шарами? Каждый из них тоже можно будет поделить на два? Или они уже станут "неполноценными" - непригодными для дальнейшего деления на двое?

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 14:17 
Заслуженный участник
Аватара пользователя


26/01/14
4654
Cuprum2020 в сообщении #1592882 писал(а):
А вот эти два шара они останутся "полноценными" шарами?
Конечно да - они не будут ничем отличаться от исходного.

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 14:18 
Заслуженный участник
Аватара пользователя


20/08/14
8127
Cuprum2020 в сообщении #1592882 писал(а):
А вот эти два шара они останутся "полноценными" шарами?
Шар $B(c, r)$ радиуса $r$ c центром в точке $c$ - это множество $B(c, r) \subset \mathbb R^3$ всех точек, находящихся от точки $c$ на расстоянии $\le r$. Что такое "полноценность" или "пригодность к делению", мировой математике неведомо.
Похоже, Вы впервые слышите о парадоксе Банаха - Тарского. Ну так погуглите.

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 14:21 


23/05/19
963
Cuprum2020 в сообщении #1592882 писал(а):
Каждый из них тоже можно будет поделить на два?

Ну, насколько я понимаю, эти два шара будут точными копиями первого (каждый будет состоять из того же множества точек). Поэтому, видимо, можно будет.

 Профиль  
                  
 
 Re: Как доказать почти очевидное утверждение?
Сообщение07.05.2023, 17:42 
Заслуженный участник


18/01/15
3129
ТС задал вопрос, стоящий ответа. То есть вопрос такой: где граница между очевидностью и тем, что надо доказывать ? А то ведь всякое бывает. Например, барон Коши однажды изловчился доказать, что, говоря по-современному, непрерывная функция на отрезке дифференцируема всюду, за исключением не более чем счетного множества точек.

Понятно, что в принципе всё можно формально записать в ZFC. И тогда уж нет вопросов, есть доказательство или нет доказательства. Но это нереалистично.

В математике, вообще говоря, есть много таких вещей, которые очевидны, но тем не менее доказываются. Например, то, что ТС привел. Или утверждение, что для расстояний на плоскости выполнено неравенство треугольника $|AC|\leq |AB|+|BC|$. В наше время в школьной геометрии это считалось за аксиому, а вот оказывается в другой системе построения геометрии это можно доказать. Так же как и признаки равенства треугольников, которые в учебнике Колмогорова тоже с неба падают.

(Оффтоп)

И когда я об этом узнал, это вообще изрядно перевернуло мой взгляд на геометрию, да отчасти и на математику в целом!


Что тут можно рекомендовать ? Во-первых, опираться на собственный опыт, чувства и интуицию, оценивая, удовлетворяет вас какое-то рассуждение или нет. Во-вторых, в разных частях математики есть свои обычаи и традиции насчет того, что является достаточным обоснованием. При этом, заметим, уровень обоснованности зависит от того, в каком тексте рассуждение находится. Одно дело школьный учебник, другое монография для специалистов, и т.д.

Для примеру, утверждение про множества из исходного поста доказывается так. (На уровне, скажем, некоторого совсем введения в основы матанализа).

По определению, два множества $A$ и $B$ считаются равными, если они состоят из одних и тех же элементов. То есть, если $x\in A$ тогда и только тогда, когда $x\in B$. А пересечение $A\cap B$ --- это множество всех $x$ таких, что $x\in A$ и $x\in B$. Также $A\subseteq B$ означает, по определению, что любое $x\in A$ лежит и в $B$.

Допустим, что $A\subseteq B$, и докажем, что $A\cap B=A$. Пусть $x\in A$. Тогда $x\in B$, по определению того, что такое $A\subseteq B$. Поскольку $x\in A$ и $x\in B$, то $x\in A\cap B$. С другой стороны, допустим, что $x\in A\cap B$. Тогда $x\in A$ по определению пересечения $A\cap B$. Итак, $x\in A$ тогда и только тогда, когда $x\in A\cap B$ . Это и означает, что $A\cap B=A$.

-- 07.05.2023, 16:48 --

Обратно, допустим, что $A\cap B=A$, и докажем, что $A\subseteq B$. Если $x\in A$, то $x\in A\cap B$ по определению равенства множеств, а отсюда $x\in B$ тоже по определению (пересечения). Значит, любое $x\in A$ лежит в $B$, а это и означает, что $A\subseteq B$.

Вот так.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group