Но мне сдаётся, что Левенберг-Марквардт лучше.
Не соглашусь. ТС решает аппроксимацию, значит у него есть шум. Какой именно там у него шум - хз, и в этой задаче будет много локальных минимумов. Как их разруливать Левенберг-Марквардт будет - реально можно только повеситься, программируя всякие симулейтед-анниелинги с регионами поверх оного, чтобы он из минимума вылез. Если исходных оцифрованных данных
, то мной предложенный метод на одну итерацию будет требовать
арифметических операций, где
примерно равно
, что в общем-то не есть супер много. И Ньютон там одномерный пишется, и можно честно обойти все регионы, оценивая по сходимости Ньютона регион, куда он сходится, а куда - нет, так как фактически область задания можно и сверху и снизу ограничить.