Пусть функция

голоморфна в полуплоскости

(где

) и при

имеет асимптотическое разложение

, то есть для любого

функция

стремится к нулю при

равномерно по

.
Я доказал, что тогда

в некоторой полуплоскости

, то есть

есть сумма ряда Дирихле в этой полуплоскости.
Упомянут ли этот факт в учебниках по рядам Дирихле или ещё где-то (в том же Леонтьева Ряды экспонент) ? Может быть он легко следует из стандартных фактов о рядах Дирихле?