2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 04:25 


05/02/21
145
Пусть $ABCD \;-$ выпуклый четырехугольник, $\angle CBD = 2\angle ADB, \angle ABD = 2\angle CDB$ и $AB = CB.$ Доказать, что $AD = CD$.

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 10:27 


02/04/18
240
Проведем диагональ $BD$ и рассмотрим два полученных треугольника, обозначив $\alpha=\angle{ADB}, \beta=\angle{CBD}$, тогда из теоремы синусов для обоих и равенства $AB=BC$ получим
$$\frac{\sin{\alpha}}{\sin{(\pi-\alpha-2\beta)}}=\frac{\sin{\beta}}{\sin{(\pi-2\alpha-\beta)}}$$
Аккуратно все расписав, получаем довольно простое уравнение, из которого следует, что либо $\sin{\beta}=\pm\sin{\alpha}$, либо $\alpha+\beta={\pi\over2}$.
Второй случай означает, что $\angle{ABC}$ - развернутый, первый - либо аналогичное про $\angle{ADC}$, либо равенство треугольников-половинок четырехугольника.

Это точно олимпиада?

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 13:59 


05/02/21
145
Dendr в сообщении #1584067 писал(а):
Второй случай означает, что $\angle{ABC}$ - развернутый

Из развернутости этого угла ничего не следует. Ну да, четырехугольник вырождается в треугольник, вершина $B \; -$ середина стороны $AC$ по условию. И что?

Dendr в сообщении #1584067 писал(а):
первый - либо аналогичное про $\angle{ADC}$

Здесь то же самое. Ну да, треугольник равнобедренный. И что? Это не означает, что $D$ обязательно лежит на медиане.

Dendr в сообщении #1584067 писал(а):
обозначив $\alpha=\angle{ADB}, \beta=\angle{CBD}$,

По-моему, тут что-то другое имелось ввиду. С такими обозначениями уравнение выше не верно.

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 14:32 
Аватара пользователя


11/12/16
14232
уездный город Н
Нужно посчитать $\angle BAD$ двумя способами:
1. С учетом, что $\triangle ABC$ равнобедренный.
2. И из $\triangle ABD$

Тогда получится $ 3 \beta = \beta + 2 \alpha$, откуда $\alpha=\beta$

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 14:43 


05/02/21
145
EUgeneUS в сообщении #1584080 писал(а):
1. С учетом, что $\triangle ABC$ равнобедренный.

То есть, предварительно найти $\angle BAC$? Но как потом найти $\angle CAD$?

И кто такие $\alpha$ и $\beta \;-$ скажите, пожалуйста :oops:

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 14:49 
Аватара пользователя


11/12/16
14232
уездный город Н
Mirage_Pick в сообщении #1584081 писал(а):
То есть, предварительно найти $\angle BAC$? Но как потом найти $\angle CAD$?

В промежутке надо найти углы при диагоналях.

Mirage_Pick в сообщении #1584081 писал(а):
И кто такие $\alpha$ и $\beta \;-$ скажите, пожалуйста :oops:

$\angle CBD = \alpha$
$\angle ABD = \beta$

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 15:33 


05/02/21
145
EUgeneUS в сообщении #1584080 писал(а):
Тогда получится $ 3 \beta = \beta + 2 \alpha$, откуда $\alpha=\beta$

Вам удалось вывести это, манипулируя только углами? Это удивительно, потому что исходная конфигурация задачи такая минималистичная, что все, до чего могут добраться руки, уже дано в условии. Максимум, что можно выудить - соотношение между синусами. Но тогда надо разобраться с "граничными" случаями, которые я отметил выше.

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 15:34 
Аватара пользователя


11/12/16
14232
уездный город Н
Mirage_Pick в сообщении #1584095 писал(а):
Вам удалось вывести это, манипулируя только углами?


Да.

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 15:38 


05/02/21
145
EUgeneUS, перепроверьте вычисления.

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 16:33 
Аватара пользователя


11/12/16
14232
уездный город Н
Mirage_Pick
С чего бы?
Может быть Вы уже свой вариант предоставите? А то гложут смутные сомнения в его наличии.

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 16:51 


05/02/21
145
EUgeneUS, с чего бы мне представлять решение в олимпиадном разделе? Так вся интрига пропадет. Это участники должны давать попытки своего решения. Классическое решение я отправлю модератору, если потребуется.

-- 03.03.2023, 17:00 --

EUgeneUS в сообщении #1584113 писал(а):
С чего бы?

Уже писал выше. Попытки каким-либо образом выразить одни углы через другие бесперспективны, поскольку углы, заданные в условии, ни имеют друг к другу никакого отношения. По факту кроме равенства двух сторон тут ничего нет. Если бы предлагаемый вами подход в принципе был бы возможен, то добрая половина задач олимпиадной геометрии с равнобедренными треугольниками решались бы тривиальным образом.

Проверьте, не вкралась ли в рассуждениях неявная отсылка к симметрии или "половинкам", как у первого ответившего. Это не так уж и трудно сделать для такой "негромоздкой" задачи.

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 17:08 


05/09/16
12204
Mirage_Pick в сообщении #1584119 писал(а):
По факту кроме равенства двух сторон тут ничего нет.

Ну не совсем так. Описанная вокруг треугольника $ACD$ окружность имеет радиус $AB$, например :mrgreen:

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 17:11 


05/02/21
145
wrest в сообщении #1584125 писал(а):
Ну не совсем так. Описанная вокруг треугольника $ACD$ окружность имеет радиус $AB$,

?! Ничего подобного. Что происходит с форумчанами? :shock:

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 17:17 
Аватара пользователя


11/12/16
14232
уездный город Н
Mirage_Pick в сообщении #1584119 писал(а):
Классическое решение я отправлю модератору, если потребуется.


"Классическое"? То есть не Ваше?

Mirage_Pick в сообщении #1584119 писал(а):
Уже писал выше. Попытки каким-либо образом выразить одни углы через другие бесперспективны, поскольку углы, заданные в условии, ни имеют друг к другу никакого отношения.

Да ладно.

Mirage_Pick в сообщении #1584119 писал(а):
Если бы предлагаемый вами подход в принципе был бы возможен, то добрая половина задач олимпиадной геометрии с равнобедренными треугольниками решались бы тривиальным образом.

Да ладно.

Mirage_Pick в сообщении #1584119 писал(а):
Проверьте, не вкралась ли в рассуждениях неявная отсылка к симметрии или "половинкам", как у первого ответившего. Это не так уж и трудно сделать для такой "негромоздкой" задачи.

Проверил, ничего там нет, кроме арифметики, примененной к углам.
Я же Вам почти по пунктам всё написал. Почему у Вас возникли проблемы с повторением решения?

 Профиль  
                  
 
 Re: Математическая олимпиада Канады 2000/4
Сообщение03.03.2023, 17:18 


05/09/16
12204
Mirage_Pick в сообщении #1584127 писал(а):
?! Ничего подобного. Что происходит с форумчанами?

Смотрите. Из
Mirage_Pick в сообщении #1584059 писал(а):
к, $\angle CBD = 2\angle ADB, \angle ABD = 2\angle CDB$

Получаем (складываем равенства)
$\angle CBD + \angle ABD = 2\angle CDB + 2\angle ADB$
В левой части у нас $\angle CBD + \angle ABD = \angle ABC$
В правой части у нас $2(\angle CDB + \angle ADB)=2\angle CDA$
Таким образом, $\angle B = 2 \angle D$
Ну собсно отсюда и следует что
wrest в сообщении #1584125 писал(а):
Описанная вокруг треугольника $ACD$ окружность имеет радиус $AB$

Нужно ли и как это дальше использовать я не придумал, просто заметил факт.
А... я понял что вас смутило. Я неточно написал. Я имел в виду, что длина радиуса описанной вокруг треугольника $ACD$ окружности равна длине отрезка $AB$, а не то, что $AB$ является радиусом :mrgreen:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 19 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group