2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Формула Вульфа Брэгга
Сообщение01.03.2023, 10:00 


15/09/20
198
Искал вывод этой формулы и в очень многих местах этот вывод кажется мне каким-то не физическим, а скорее эмпирическим.
Речь, как правило, идет либо об отражении лучей от неких "плоскостей", но на мой взгляд это вводит в заблуждение. Плоскости, очевидно, имеются в виду условные, математические, проведенные мысленно через атомы решетки. Физически от этих плоскостей ничего отражаться не может.

Картинка из Википедии: Изображение

На мой взгляд нарисована полнейшая чушь. От чего тут "отражаются" лучи??? Лучи надо рисовать только те, которые проходят через атомы, которые физически и являются источниками вторичных волн, которые потом накладываются друг на друга.
В некоторых источниках атомы на "плоскостях" вообще не рисуют. Это может даже и правильней, если не хочется углубляться в физику процесса, но если хочется вникнуть, то такие картинки еще больше запутывают.
Я прав?

Собственно вопрос возник при решении одной задачи, в которой надо найти длину волны когда известен только период кубической решетки. Если к этой задаче подходить с точки зрения картинки, на которой угол может быть вообще любой, то и длина волны, значит, может быть произвольной. Ерунда же?

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 10:11 
Заслуженный участник


28/12/12
7990
kzv в сообщении #1583825 писал(а):
На мой взгляд нарисована полнейшая чушь. От чего тут "отражаются" лучи??? Лучи надо рисовать только те, которые проходят через атомы, которые физически и являются источниками вторичных волн, которые потом накладываются друг на друга.

Сдается мне, что про "отражение лучей" вы додумываете. А на рисунке показаны волновые векторы плоских волн, являющихся огибающими сферических волн, рассеянных отдельными атомами плоскости.

kzv в сообщении #1583825 писал(а):
Собственно вопрос возник при решении одной задачи, в которой надо найти длину волны когда известен только период кубической решетки. Если к этой задаче подходить с точки зрения картинки, на которой угол может быть вообще любой, то и длина волны, значит, может быть произвольной.

На картинке нужно найти разницу путей для отраженных от соседних плоскостей волн и рассмотреть их интерференцию. Если разность хода полволны, то отражаться будет примерно ноль.

-- 01.03.2023, 14:13 --

Ну и общее замечание - физику лучше все-таки изучать по профильным учебникам. В крайнем случае, можно посмотреть Физическую энциклопедию.

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 10:59 


15/09/20
198
DimaM в сообщении #1583832 писал(а):
На картинке нужно найти разницу путей для отраженных от соседних плоскостей волн и рассмотреть их интерференцию

Разность путей равна сумме двух сторон треугольника: $AB+BC$
Если угол не дан, а дан только период решетки, эта сумма может быть примерно любой, от $2d$ до бесконечности. Верно?

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 11:30 
Заслуженный участник


28/12/12
7990
kzv в сообщении #1583835 писал(а):
Разность путей равна сумме двух сторон треугольника: $AB+BC$

Нет. Нужно нарисовать падающий и отраженный от нижней плоскости волновые фронты, пересекающиеся на верхней плоскости.

kzv в сообщении #1583835 писал(а):
Если угол не дан, а дан только период решетки, эта сумма может быть примерно любой, от $2d$ до бесконечности. Верно?

Нет. Разность хода $\delta=2d\sin\theta$. Может быть от $0$ до $2d$.

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 12:39 


15/09/20
198
DimaM в сообщении #1583844 писал(а):
Разность хода $\delta=2d\sin\theta$. Может быть от $0$ до $2d$.

Это значит, что интерференцию на каком-то одном кристалле можно наблюдать для волны с любой длиной от $0$ до $2d$?

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 12:51 
Заслуженный участник


28/12/12
7990
kzv в сообщении #1583863 писал(а):
Это значит, что интерференцию на каком-то одном кристалле можно наблюдать для волны с любой длиной от $0$ до $2d$?

Обычно при наблюдениях длина волны фиксирована, а меняется угол.
Кроме того, есть еще интерференция волн, рассеянных отдельными атомами в одной плоскости (тоже называется условие Брэгга-Вульфа) - аналогия традиционной дифракционной решетки, это тоже нужно учесть, когда рассчитывается интенсивность отраженной волны под разными углами (см. лауэграмма).

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 13:10 


15/09/20
198
DimaM в сообщении #1583867 писал(а):
kzv в сообщении #1583863 писал(а):
Это значит, что интерференцию на каком-то одном кристалле можно наблюдать для волны с любой длиной от $0$ до $2d$?

Обычно при наблюдениях длина волны фиксирована, а меняется угол.
Кроме того, есть еще интерференция волн, рассеянных отдельными атомами в одной плоскости (тоже называется условие Брэгга-Вульфа) - аналогия традиционной дифракционной решетки, это тоже нужно учесть, когда рассчитывается интенсивность отраженной волны под разными углами (см. лауэграмма).


Я понимаю, что если есть и период решетки и угол, то длину волны можно вычислить без проблем, зная условие максимума $n\lambda=2d\sin\theta$
Допустим задача такая: Нейтроны с какой энергией будут интерферировать на кубическом кристалле с постоянной решетки $d=0.5\text{ нм}$

Решаем в предположении, что внутри кристалла есть какие-то полупрозрачные плоскости, от которых что-то там отражается под любыми углами:
$$\lambda=\frac{2d\sin\theta}{n}$$
Числитель может быть любым от $0$ до $2d$, значит длина волны - тоже любой от $0$ до $\frac{2d}{n}$. Ну и ответ: любые нейтроны, с энергией от $\frac{h^2}{2m\lambda^2}=\frac{h^2n^2}{8md^2}$, до бесконечности.
Это правильный ответ?

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 13:37 
Заслуженный участник


28/12/12
7990
kzv в сообщении #1583871 писал(а):
Допустим задача такая: Нейтроны с какой энергией будут интерферировать на кубическом кристалле с постоянной решетки $d=0.5\text{ нм}$

Это реальная задача?
Тогда напишите название задачника, чтоб можно было обходить его дальней дорогой.

Кроме того, в кубическом кристалле есть плоскости $(100), (110), (111)$ и т.п.

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 13:49 


15/09/20
198
Задачник не помню, но реальная (число поменял, чтоб не так легко потом решение гуглилось). Есть похожая: Период кристаллической решетки образца $a=0.5\text{ нм}$. Найти температуру атомов гелия, которые интерферируют на образце.

 Профиль  
                  
 
 Re: Формула Вульфа Брэгга
Сообщение01.03.2023, 17:27 
Заслуженный участник


21/08/10
2580
kzv в сообщении #1583825 писал(а):
это вводит в заблуждение.


В общем-то да. Так всегда бывает, когда нормальный математический вывод пытаются заменить квазинаглядными квазиобъяснениями. На самом же деле берем набор точечных (или даже с формфактором) рассеивателей, составляющих регулярную решетку, записываем рассеянную волну и путем довольно простых математических выкладок убеждаемся, что разность волновых векторов падающей и рассеянной волн должна равняться вектору обратной решетки. Все просто и понятно. Дальше можно получить и формулу Вульфа-Брегга. Но для этого надо владеть математикой, довольно элементарной, впрочем. Но в курсах общей физики обычно вместо этого рисуют некие картинки, которые якобы что-то "объясняют", как говорят, "на пальцах". Хотя на самом деле это никакое не объяснение вообще. Читайте более продвинутые книги, и таких вопросов не будет.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Cos(x-pi/2)


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group