2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Спектр оператора
Сообщение22.11.2022, 01:19 
Аватара пользователя
Доброго времени суток!
Существует ли оператор ( в гильбертовом пространстве например), что спектр его все рациональные числа (и только)?

 
 
 
 Re: Спектр оператора
Сообщение22.11.2022, 03:38 
Аватара пользователя
TelmanStud в сообщении #1570804 писал(а):
уществует ли оператор ( в гильбертовом пространстве например), что спектр его все рациональные числа (и только)?
Нет, потому что спектр является замкнутым множеством. Но легко построить оператор, чисто точечный спектр которого--все рациональные числа.

 
 
 
 Re: Спектр оператора
Сообщение22.11.2022, 09:56 
Аватара пользователя
Red_Herring
Спасибо, за реакцию.
Как я понимаю, множество иррациональных чисел не является ни открытым ни замкнутым.
Цитата:
Но легко построить оператор, чисто точечный спектр которого--все рациональные числа.
Можете явно указать его?

 
 
 
 Re: Спектр оператора
Сообщение22.11.2022, 10:47 
TelmanStud в сообщении #1570841 писал(а):
Цитата:
Но легко построить оператор, чисто точечный спектр которого--все рациональные числа.
Можете явно указать его?

Банально: сумма проекторов на элементы какого-либо ортогонального базиса, умноженных на эти рациональные числа.

 
 
 
 Re: Спектр оператора
Сообщение22.11.2022, 12:40 
Аватара пользователя
ewert
Это получается линейный оператор, с диагональной матрицей, где диагональные элементы все рациональные числа?
А что еще дополнительно будет тогда сидеть в спектре, кроме этих?

 
 
 
 Re: Спектр оператора
Сообщение22.11.2022, 13:00 
TelmanStud в сообщении #1570887 писал(а):
А что еще дополнительно будет тогда сидеть в спектре, кроме этих?

Все иррациональные числа (они будут принадлежать непрерывному спектру), ибо

Red_Herring в сообщении #1570824 писал(а):
спектр является замкнутым множеством

Но смотря, конечно, что понимать под рациональными числами. Если только вещественные, то спектр -- это вещественная ось (остальные комплексные числа будут регулярными точками). Если же рассматривать все комплексные числа с рациональными вещественными и мнимыми частями, то и спектром будет, естественно, вся комплексная плоскость.

 
 
 
 Re: Спектр оператора
Сообщение22.11.2022, 13:17 
Аватара пользователя
Red_Herring
ewert
Все спасибо Вам!

 
 
 
 Re: Спектр оператора
Сообщение26.02.2023, 13:23 
Аватара пользователя
Red_Herring в сообщении #1570824 писал(а):
Нет, потому что спектр является замкнутым множеством. Но легко построить оператор, чисто точечный спектр которого--все рациональные числа.


а вот Иосида пишет ,что достаточным условием открытости резольвентного множества является замкнутость оператора. А про то, что резольвентное множество открыто в случае любого оперватора он не пишет. Короче, ссылкой снабдите, если не затруднит.

 
 
 
 Re: Спектр оператора
Сообщение26.02.2023, 19:04 
krum в сообщении #1583369 писал(а):
А про то, что резольвентное множество открыто в случае любого оперватора он не пишет.
Как вы определяете резольвентное множество незамкнутого или тем более незамыкаемого оператора $A$ на банаховом пространстве $X$? По Иосиде это множество таких $\lambda\in\mathbb C$, что $A-\lambda$ инъективен, имеет плотный образ $R(A-\lambda)\subset X$ и коограничение на этот образ имеет непрерывный обратный $(A-\lambda)^{-1}$. Предположим, что в резольвентном множестве есть элемент $\lambda$. Рассмотрим $(A-\lambda)^{-1}$ как плотно определённый оператор на $X$, раз он непрерывный, то замыкаемый, значит, $A$ тоже замыкаемый: график $A$ -- это прообраз графика $(A-\lambda)^{-1}$ относительно гомеоморфизма $X\times X\to X\times X$, $(x,y)\mapsto(y-\lambda x, x)$. То есть если резольвентное множество непусто, то оператор замыкаем, а у замыкаемого резольвентое множество такое же, как и у замыкания.

 
 
 
 Re: Спектр оператора
Сообщение26.02.2023, 22:48 
Аватара пользователя
угу

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group