Изложу один нехитрый способ решения несложных нестандартных школьных задач по математике, который я вывел эмпирически вывел из опыта решения таких задач. Если кому интересно, как я его применил к решению несложных задач, можете почитать.
(Оффтоп)
Обдумать свойства объектов ("Заметим, что..."), порассуждать логически о свойствах, учесть взаимосвязь с другими свойствами других объектов. (*)
Пример 1. (Вступительная задача в ЗФТШ 80-х годов). Задача о равнобедренных треугольниках.Можно ли разместить на плоскости шесть точек так, чтобы любые три из них являлись вершинами равнобедренного треугольника?
Когда я решал эту задачку, мой мозг был отравлен книжкой Нильсона "Искусственный интеллект", где излагался метод решения задач методом перебора на дереве состояний - осуществлялся перебор в глубину или в ширину.
Я так начал решать и эту задачку: сначала взял тривиальный случай трех точек (равнобедренный треугольник), потом добавил еще одну точку к трем имеющимся и произвел перебор возможных вариантов. В этом случае я нашел только вариант, когда 4 точки лежат на вершинах ромба. Не совсем очевидный случай, когда 4 точки лежат на вершинах трапеции с тремя равными сторонами, я упустил. Образовался затык.
А вот метод (*) позволяет легко и просто найти решение поставленной задачи. Какое замечательное геометрическое место точек обладает свойством равноудаленности, к примеру, от одной точки? (На мысль о равноудаленности нас наводит требование о равнобедренных треугольниках.) Правильно: окружность. Отсюда решение очевидно: пять точек размещаем на вершинах правильного пятиугольника, вписанного в окружность, шестая точка - центр этой окружности.
Отсюда легко решить следующую задачку:
Пример 2. (Вступительная задача в ЗФТШ 80-х годов). Задача о частице в цилиндре.Из точки на окружности основания цилиндра вылетает частица, которая отражается от оснований и боковой поверхности цилиндра по закону: угол падения равен углу отражения, а в точках окружностей оснований отражения не происходит. Известно, что первое отражение произошло в точке на основании цилиндра, а после ряда отражений частица вернулась в исходную точку. Найдите наименьшее возможное число отражений.
(Здесь надо убрать из рассмотрения тривиальный случай, когда дно цилиндра располагается по отношению к стенкам не под прямым углом.)
Подробности опущу, скажу лишь, что нужно использовать равносторонний треугольник в качестве некоторых проекций.
Пример 3. (Задача из олимпиады "Покори Воробьевы Горы") Решить систему уравнений:На первый взгляд, нужно произвести какие-то преобразования с уравнениями. Но какие? И куда двигаться?
Заметим, что уравнений два, а неизвестных три. Что это означает? Не значит ли это, что здесь на самом деле скрыты три уравнения? Отсюда вспомним одно замечательное свойство: если сумма квадратов действительных чисел равна нулю, то и сами эти числа равны нулю. Отсюда можно представить одно из этих уравнений в качестве суммы двух квадратов.
Интересно, кто-нибудь пробовал прогнать через ChatGPT перечисленные выше задачки? Или задачки из Задачника Кванта, школьные олимпиадные задачки, вступительные задачки в ЗФТШ/ВЗМШ?
Цитата:
Пример 1. (Вступительная задача в ЗФТШ 80-х годов). Задача о равнобедренных треугольниках.
Можно ли разместить на плоскости шесть точек так, чтобы любые три из них являлись вершинами равнобедренного треугольника?
Перевод на английский с помощью Google Translate:
Цитата:
Example 1 The problem of isosceles triangles.
Is it possible to place six points on the plane so that any three of them are vertices of an isosceles triangle?
На одном форуме уже попробовали скормить эту задачу ChatGPT.
Ответ:
Цитата:
One way to prove it is by contradiction. Assume that it is possible to place six points on the plane so that any three of them are the vertices of an isosceles triangle.
Consider any three of these six points, say A, B, and C. Since these three points are the vertices of an isosceles triangle, two of the sides must have the same length. Without loss of generality, let AB = AC.
Now consider the three points B, C, and D, where D is any of the remaining three points. Since B, C, and D are also the vertices of an isosceles triangle, two of the sides must have the same length. Without loss of generality, let BD = BC.
But AB = AC and BD = BC, which means AD = AB = AC. This means that the fourth point, D, must also be on the line segment connecting A and B or A and C, which is impossible since there are only six points and one of them, D, is not on the line segment connecting A and B or A and C.
This contradiction shows that it is not possible to place six points on the plane so that any three of them are the vertices of an isosceles triangle.
Перевод на русский с помощью Google Translate:
Цитата:
Один из способов доказать это — от противного. Предположим, что на плоскости можно разместить шесть точек так, что любые три из них являются вершинами равнобедренного треугольника.
Рассмотрим любые три из этих шести точек, скажем, A, B и C. Поскольку эти три точки являются вершинами равнобедренного треугольника, две стороны должны иметь одинаковую длину. Без ограничения общности пусть AB = AC.
Теперь рассмотрим три точки B, C и D, где D — любая из оставшихся трех точек. Поскольку B, C и D также являются вершинами равнобедренного треугольника, две стороны должны иметь одинаковую длину. Без ограничения общности пусть BD = BC.
Но AB = AC и BD = BC, значит, AD = AB = AC. Это означает, что четвертая точка D также должна находиться на отрезке, соединяющем А и В или А и С, что невозможно, поскольку точек всего шесть, и одна из них, D, не лежит на отрезке, соединяющем А и С. В или А и С.
Это противоречие показывает, что нельзя разместить на плоскости шесть точек так, чтобы любые три из них были вершинами равнобедренного треугольника.
-- Сб янв 21, 2023 16:03:52 --Цитата:
Пример 2. (Вступительная задача в ЗФТШ 80-х годов). Задача о частице в цилиндре.
Из точки на окружности основания цилиндра вылетает частица, которая отражается от оснований и боковой поверхности цилиндра по закону: угол падения равен углу отражения, а в точках окружностей оснований отражения не происходит. Известно, что первое отражение произошло в точке на основании цилиндра, а после ряда отражений частица вернулась в исходную точку. Найдите наименьшее возможное число отражений. (Здесь надо убрать из рассмотрения тривиальный случай, когда дно цилиндра располагается по отношению к стенкам не под прямым углом.)
Перевод условия с помощью Google Translate:
Цитата:
Example 2 The problem of a particle in a cylinder.
From a point on the circumference of the base of the cylinder, a particle flies out, which is reflected from the bases and the side surface of the cylinder according to the law: the angle of incidence is equal to the angle of reflection, and there is no reflection at the points of the circles of the bases. It is known that the first reflection occurred at a point on the base of the cylinder, and after a series of reflections the particle returned to the starting point. Find the smallest possible number of reflections. (Here it is necessary to remove from consideration the trivial case when the bottom of the cylinder is not at right angles to the walls.)
Ответ:
Цитата:
The smallest possible number of reflections for a particle in a cylinder is 3.
To see this, imagine a particle starting at point A on the circumference of the base of the cylinder. After the first reflection at point B on the base, the particle will hit the side of the cylinder at point C. The second reflection will be at point D, also on the circumference of the base. The third reflection will be back at point A, the starting point. This is the minimum number of reflections because any additional reflection would require the particle to hit the side of the cylinder twice before returning to the starting point, which is not possible based on the law of reflection.
It is important to note that this solution assumes the base of the cylinder is not at a right angle to the walls, as stated in the problem. If the base is at a right angle to the walls, the particle will simply reflect back and forth between the bases without ever hitting the side, and the number of reflections will be infinite.
Перевод ответа с помощью Google Translate:
Цитата:
Наименьшее возможное число отражений частицы в цилиндре равно 3.
Чтобы убедиться в этом, представьте себе частицу, начинающуюся в точке А на окружности основания цилиндра. После первого отражения в точке В на основании частица ударится о стенку цилиндра в точке С. Второе отражение будет в точке D, также по окружности основания. Третье отражение вернется в точку А, начальную точку. Это минимальное количество отражений, потому что любое дополнительное отражение потребовало бы, чтобы частица дважды ударилась о стенку цилиндра, прежде чем вернуться в исходную точку, что невозможно по закону отражения.
Важно отметить, что это решение предполагает, что основание цилиндра не находится под прямым углом к стенкам, как указано в задаче. Если основание находится под прямым углом к стенам, частица будет просто отражаться между основаниями и обратно, никогда не ударяясь о стенки, и количество отражений будет бесконечным.