2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Присоединенная масса
Сообщение12.10.2022, 13:37 
Аватара пользователя
Когда тело движется, жидкость также приходит в движение и, следовательно, обладает кинетической энергией. При прямолинейном движении эта величина не зависит от скорости тела и определяется соотношением соотношением $E_k = \frac{(m + \mu) v^2}{2}$, где $E_k$ - кинетическая энергия жидкости и тела, $m$ - масса движущегося тела, $v$ - скорость тела. В этой части задачи нам необходимо найти присоединенную массу шара радиуса $R$, движущегося в жидкости с плотностью $\rho$.

Уверен, задача относительно легко решается в рамках гидродинамики, однако школьнику на олимпиаде нужно использовать хитрую аналогию для того чтобы успешно решить задачу.

 
 
 
 Re: Присоединенная масса
Сообщение17.10.2022, 04:39 
Аватара пользователя
Вкратце гидродинамическое решение.

Пусть шар движется со скоростью $\mathbf v$ в направлении $Oz$, и в момент $t$ его центр совпадает с началом координат. Рассмотрим поле скоростей жидкости $\mathbf u(\mathbf r)$ в этот же момент.
Течение безвихревое, $\operatorname{rot}\mathbf u=0$, откуда $\mathbf u=-\operatorname{grad}\psi$. Жидкость несжимаема, $\operatorname{div}\mathbf u=0$, значит, потенциал удовлетворяет уравнению Лапласа $\Delta\psi=0$.

На поверхности шара нормальная компонента $u_r=v_r$, где $u_r=-\frac{\partial\psi}{\partial r},\;v_r=v\cos\theta$. Так зависит от угловых координат только сферическая гармоника $P_1(\cos\theta)$, остальные в силу ортогональности отсутствуют. Ей соответствует частное решение $\psi=(Ar+Br^{-2})\cos\theta$. С учётом убывания $\mathbf u$ на бесконечности $A=0$. Коэффициент $B$ находится из того же условия $u_r=v_r$, в итоге $\psi=\frac {R^3v}{2}\,r^{-2}\cos\theta$.

Кинетическая энергия жидкости
$\frac{\rho}2\int\limits_{r\geqslant R}\mathbf u^2\;dV=\frac{\rho}2\int\limits_{r\geqslant R}(\operatorname{grad}\psi)^2\;dV=-\frac{\rho}2\int\limits_{r=R}\psi\frac{\partial\psi}{\partial r}\;dS=\frac{\mu v^2}{2}$,
где $\mu=\frac 2 3\pi R^3\rho$. Применена интегральная теорема (первая формула Грина), упрощающая интегрирование.

Но что делать школьнику? :|
Хорошо, $\psi$ можно сопоставить с электростатическим потенциалом диполя с дипольным моментом $\frac {R^3v}{2}\mathbf e_z$ (поскольку электрическое поле без зарядов "течёт", как идеальная несжимаемая жидкость, неразрывно и без завихрений). Тогда $\mathbf u$ сопоставляется с электрическим полем этого диполя. Кинетической энергии жидкости будет соответствовать энергия поля вне шара с каким-то коэффициентом.
Допустим, "дипольность" можно обосновать наличием выделенного направления и осесимметричностью. Но из каких соображений можно получить дипольный момент, например? :facepalm:

 
 
 
 Re: Присоединенная масса
Сообщение17.10.2022, 22:00 
Аватара пользователя
svv да, и вы очень близки к тому что предлагали авторы

Они предлагали переместиться в систему отсчета связанную с телом. В таком случае, поле скоростей аналогично (с точностью до знака) линиям магнитного поля вокруг сверхпроводника во внешнем однородном поле.

 
 
 
 Re: Присоединенная масса
Сообщение18.10.2022, 07:34 
profilescit в сообщении #1566984 писал(а):
В таком случае, поле скоростей аналогично (с точностью до знака) линиям магнитного поля вокруг сверхпроводника во внешнем однородном поле.

Как-то мне сомнительно, что такая задача для школьников хоть сколько-нибудь проще.

 
 
 
 Re: Присоединенная масса
Сообщение18.10.2022, 09:27 
Аватара пользователя
DimaM задача взята с одного из отборочных этапов команды РФ на межнар по физике.

 
 
 
 Re: Присоединенная масса
Сообщение18.10.2022, 09:31 
profilescit в сообщении #1567024 писал(а):
задача взята с одного из отборочных этапов команды РФ на межнар по физике

Это замечание ортогонально моему.

 
 
 
 Re: Присоединенная масса
Сообщение18.10.2022, 19:17 
Аватара пользователя
У меня вопрос другой: Сколько школьников "решило" эту задачу? А если еще и пару их решений приведете....P.S. я просто хорошо знаком с этим эффектом of added mass как в гидродинамике так и в квантовой теории твердого тела...и всегда считал эту тему уделом строгих регулярных (вузовских) методов

 
 
 
 Re: Присоединенная масса
Сообщение19.10.2022, 15:52 
Аватара пользователя
DimaM я имел в виду что эти школьники обладают всем необходимым набором знаний для решения задачи. Возможно стоило дать полный текст задачи, там в подпунктах авторы намекали на данную аналогию

reterty к сожалению отсутствует статистика по этой задачи, но могу привести пример моих учеников которым я предложил эту задачу. Из троих, один решил ее полностью а другие частично. Но опять же, это школьники которые целенаправлено готовятся к межнару

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group