Далее - понятия о криволинейных и поверхностных интегралах, начала векторного анализа (понятия градиента, ротора, дивиргенции), без этого темы про электричество будут выхолощены.
Тут что-то неожиданное. В СССР на ФФ раздел «Электричество и магнетизм» (условный третий том курса «Общей физики» Сивухина) из курса «Общей физики» был вроде бы в третьем семестре (осенний семестр второго курса). (Это было пятилетнее образование.) Позже вроде раздел «Электричество и магнетизм» объединяли с «Электродинамикой» и эта дисциплина была на втором курсе, см., например,
сообщение DimaM. Правда в разных университетах по-разному, но я слышал в 3 семестре, не раньше. Криволинейные, поверхностные интегралы и элементы теории поля изучаются на ФФ во втором семестре при двухсеместровом курсе «Дифференциального и интегрального исчисления» / «Основ математического анализа». Т.е. ротор, дивергенция, градитент уже математики изложили.
В школе курс электричества вводный. Он должен быть связан с экспериментом, а в эксперименте, как правило, работают
интегральные законы электродинамики, так что дивергенция и ротор в школе как бы и не очень нужны, а если не так, то примеры хотелось бы увидеть. Если же серьёзней копнуть, то дивергенцией, ротором и лапласианом не обойтись: потянется УМФ и другие математические дисциплины (смотря куда копать).
Весьма полезно представлять, что лежит математически под выражениям вида "первый порядок малости" и помнить (и знать откуда берутся)
Это тема бесконечно малые функции и сравнение бесконечно малых функций из раздела типа «Предел и непрерывность» (там даже эквивалентности и «О-символику» вводят: «O-большим» и «o-малым»), т.е. до Производных. Хотя иногда и в теме производные (иногда и такое бывает). Видимо, чтобы быстрее изложить эти вещи, да и (однократные) интегралы прочесть, в первом семестре после сокращения часов на построение действительных чисел и введение элементарных функций времени не осталось.
В «духе» школьных действительных чисел, действительные числа вводятся в книге Ильин, Позняк «Основы математического анализа», Т.1. Там же можно найти и введение элементарных функций. Иначе получается, что в школе нет времени, и в вузе нет времени. Пользы физикам от этих тем никакого, поэтому я и просил уточнить по программе, что в Германии при поступлении в университет знать надо.
Если есть читавшие / проводившие семинарские занятия или слушавшие не позже 25 лет назад эти темы на первом курсе ФФ или технической специальности в Мат. анализе, то напишите, очень интересно.
Если к моменту изучения электричества элементы теории поля вроде как пройдены, то вот вводный курс «Механики» начинает читаться параллельно с «Математическим анализом» с первого семестра.
И в курсе «Механики» встречаются и объёмные, криволинейные, поверхностные интегралы (массы, центры тяжести, моменты,…). А в курсе анализа эти темы, как правило, во втором семестре. Но на семинарских занятиях в университете обычно используется симметрия и, как правило, двойные и тройные интегралы быстро, правда без строгих обоснований, сводятся к однократным. Аналогично на школьных олимпиадах. Ну и на форуме в ПРР (Ф) и ПРР (М) такие темы постоянно возникают, например
«Задача о нахождении среднего значения 1/r». Можно, конечно, там было говорить о поверхностном интеграле первого рода и даже в сферическую систему координат перейти, но можно, учитывая симметрию, обойтись однократным интегралом, а при большом желании даже обосновать.
В связи с этим меня заинтересовало изложение интегралов в школе. В книге
Мордкович А.Г., Семёнов П.В. Алгебра и начала математического анализа 11 класс. Ч.1 Учебник для общеобразовательных организаций (базовый и углублённый уровень) — М.: Мнемозина, 2014
есть глава 4 «Первообразная и интеграл», а в ней §21 «Определённый интеграл».
Вначале на интуитивном уровне вводится понятие площади криволинейной трапеции. Затем даётся понятие определённого интеграла, по сути, без чёткой формулировки понятия интегральной суммы. Там вообще создаётся видимость предела числовой последовательности.
В книге
Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и начала математического анализа. 11 класс. Учебник для учащихся общеобразоват. организаций (углублённый уровень) — М.: Мнемозина, 2009в гл. 1 §3 вводится понятие квадрируемой фигуры (!), но дальше даётся определение определённого интеграла через разность первообразных, но зато даются приложения (вычисление объёмов некоторых тел).
В книге
Виленкин Н.Я. Мордкович А.Г., Семёнов П.В. Алгебра и начала математического анализа. 10 класс. Учебник для учащихся общеобразоват. организаций (углублённый уровень) — М.: Мнемозина, 2009 (18 изд., стер.)в гл. 6, §1 даётся определение длины дуги окружности
Цитата:
Длиной дуги
называется число
, разделяющее множество
длин вписанных в эту дугу ломанных и множество
длин описанных вокруг неё ломанных.
Непонятно, почему нельзя определить длину как точную верхнюю грань длин вписанных ломанных, если она существует. Что даёт определение из этого учебника? Или они эквивалентны?
Далее доказывается, рассматривая вписанные и описанные ломанные, что дуга окружности имеет длину. Я не уверен, но разве исторически подсчитывали длины вписанных и описанных ломанных не для того ли, чтобы получить двустороннюю оценку для
? В книге эта оценка как раз не приводится.
К слову, в гл. 4, в упражнении 372 Вычислить пределы:
3)* , пользуясь равенством
Зачем пользоваться равенством непонятно. Ответ сразу: .
Заглянул в ответы, а там 0. Значит опечатка. Если слегка подправить
то получим 0. Только зачем использовать равенство, если нет неопределённоcти? Непрерывность же!
Upd Дошло! Вложение:
Комментарий к файлу: Скрин из книги Виленкин Алгебра и начала математического анализ, 10 класс
lim.PNG [8.92 Кб]
Скачиваний: 0