2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 делим отрезок длины 1
Сообщение13.09.2022, 22:42 
Модератор
Аватара пользователя


11/01/06
5702
Берем отрезок длины 1 и делим его на два в случайном месте (равномерно распределённом по длине отрезка). Потом случайно выбираем один из двух меньших отрезков и также случайно делим его.
Чему равно матожидание длины наибольшего из трёх полученных отрезков?

(источник)

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение14.09.2022, 01:13 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
А где подвох? Довольно простой интеграл же должен получаться. У меня вышло ${3\over8}+\ln{4\over3}$.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение14.09.2022, 03:05 
Модератор
Аватара пользователя


11/01/06
5702
Подвох в обобщении на $n$ делений. Уже для $n=3$ зубодробительно выходит.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение14.09.2022, 08:03 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
А, ну там-то понятно, из кустов вылезет полилог, это к гадалке не ходи.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение15.09.2022, 14:09 


30/08/22
15
$$\iint\limits_{x+y+z=1}^{}\max(x,y,z)ds  $$

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение15.09.2022, 14:13 
Заслуженный участник


18/09/21
1756
dx_dyf
Вряд ли, выходит всё симметрично, а было не симметрично.
Да и логарифма тут нет.
(Видимо ещё имеется ввиду $x,y,z>0$.)

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение15.09.2022, 14:23 


30/08/22
15
А, ну да. Мы ж второй раз выбираем отрезок с вероятностью 1/2,а не пропорционально длинам.
$$
\int\limits_{0}^{1}\int\limits_{0}^{x}max(x,y,1-x-y)dxdy
+\int\limits_{0}^{1}\int\limits_{x}^{1}max(x,1-x-z,z)dxdz
$$
А токуда должен появиться логарифм? Распределение равномерное, а не нормальное.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение15.09.2022, 21:48 
Модератор
Аватара пользователя


11/01/06
5702
dx_dyf, в ваших интегралах логарифм не возникает, но только потому, что они не дают ответ на поставленный вопрос.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение16.09.2022, 11:58 


02/04/18
240
Для случая двух точек разбиения можно вот так - на пальцах буквально.

Что дано? Берем случайное число $a\in(0; 1)$, помечаем эту точку на единичном отрезке числовой оси, подбрасываем монетку, тем самым выбирая - слева или справа разбиваем в следующий раз, наконец, берем еще одно случайное $b$ из того же интервала, и пропорционально разбиваем выбранную "половину".

Упрощаем: на самом деле монетка не нужна, потому что мы можем ее перевернуть, заменить $a, b$ на $1-a, 1-b$, и получить ровно то же самое, но отзеркаленное. Так что просто считаем, что делим левую "половину".
Еще упрощаем: нам нужен самый большой элемент, поэтому при последнем разбиении меньшую "треть" можно спокойно выбросить. Вывод - достаточно рассмотреть $b>{1\over2}$.

Таким образом, нам нужно сравнивать два отрезка, один длиной $ab$, другой - $1-a$. В плоскости $(a, b)$, точнее, в правой половинке единичного квадрата, получаем две области, разделенных кривой $a(b+1)=1$. В одной интегрируем функцию $ab$, в другой, соответственно, $1-a$. Не забыв разделить на одну вторую, получим вышеупомянутый результат.

Формально:
$$\int\limits_{1/2}^{1}db\left(\int\limits_{0}^{1\over{b+1}}(1-a)da +\int\limits_{1\over{b+1}}^{1}abda\right)$$

Отсюда, кстати, легко восстановить матожидание и кратчайшего отрезка. Просто поменять местами подынтегральные выражение в скобке, а пределы внешнего интегрирования поменять на $(0, 1/2)$. В итоге получится - ${1\over2}-\ln{3\over2}\approx0,094535$.

При переходе к трем точкам получится, что первую, двустороннюю монетку все так же можно исключить, последнее число опять можно выбирать больше (или меньше, смотря как удобнее) одной второй. А вот вторая трехсторонняя монетка (на самом деле игральный кубик, просто при необходимости переворачиваем его вверх ногами), как ни крути, пригодится, но задачу можно разделить на три случая, в конце вычислив среднее арифметическое.
Там возникнет интеграл по половине куба, в целом простой, но здорово кровь портят навороченные пределы интегрирования. Это надо много свободного времени.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение16.09.2022, 12:25 
Заслуженный участник
Аватара пользователя


16/07/14
9148
Цюрих
Dendr в сообщении #1564783 писал(а):
Берем случайное число $a\in(0; 1)$, помечаем эту точку на единичном отрезке числовой оси, подбрасываем монетку, тем самым выбирая - слева или справа разбиваем в следующий раз, наконец, берем еще одно случайное $b$ из того же интервала, и пропорционально разбиваем выбранную "половину".
И это уже не то же самое, что выбрать две точки независимо, потому что вашим методом они оказываются в одной половине в более чем $50\%$ случаев, а при независимом выборе - ровно в $50\%$.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение16.09.2022, 12:54 


02/04/18
240
mihaild в сообщении #1564784 писал(а):
вашим методом они оказываются в одной половине в более чем $50\%$ случаев

Может, я не совсем удачно выразился... При выбранных $a, b$ монетка определяет, где помечать вторую точку - $ab$ или $a+b(1-a)$.

Ведь нет никакой разницы, в какой момент случайно делить отрезок. В условии: делим, выбираем часть, снова делим.
В моем варианте: делим, потом делим еще один единичный отрезок, броском монетки выбираем часть на первом отрезке, проецируем второй отрезок (с точкой) на выбранную часть.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение16.09.2022, 13:19 
Заслуженный участник
Аватара пользователя


16/07/14
9148
Цюрих
Dendr в сообщении #1564785 писал(а):
В условии: делим, выбираем часть, снова делим.
Я про первое деление, на три части двумя точками. Там выбираем две точки, и ими делим.
Dendr в сообщении #1564785 писал(а):
В моем варианте: делим, потом делим еще один единичный отрезок, броском монетки выбираем часть на первом отрезке, проецируем второй отрезок (с точкой) на выбранную часть.
Выбрать часть равновероятно, и на ней выбрать случайную точку - не то же самое, что выбрать точку равновероятно на всём отрезке. Чтобы получились одинаковые результаты, нужно часть выбирать с вероятностью пропорциональной её длине.

 Профиль  
                  
 
 Re: делим отрезок длины 1
Сообщение16.09.2022, 14:42 
Заслуженный участник


12/08/10
1677
Без ограничения общности делим всегда левый отрезок. Ответ не измениться - Получается полусумма двух симметричных относительно $\frac{1}{2}$ интегралов(нужно заменить $x$ на $1-x$). Наши отрезки - $y,x-y,1-x$.
Интегралы получаются
$$\int_0^{\frac{1}{2}}(1-x)dx+$$
$$+\int_{\frac{1}{2}}^{\frac{2}{3}}\frac{dx}{x}(\int_{0}^{2x-1}(x-y)dy+\int_{2x-1}^{1-x}(1-x)dy+\int_{1-x}^{x}(y)dy)+$$
$$+\int_{\frac{2}{3}}^{1}\frac{dx}{x}(\int_{0}^{\frac{x}{2}}(x-y)dy+\int_{\frac{x}{2}}^{x}(y)dy)$$
Во нашел логарифм. $\frac{1}{x}$ -это плотность по $y$ при фиксированном $x$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 13 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: drzewo


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group