2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Диофантово уравнение вида a n^4 +/- b n^2 = c m^4 +/- d m^2
Сообщение29.06.2022, 12:42 


21/04/22
356
EUgeneUS в сообщении #1558778 писал(а):
Результаты Беннета - мощный метод, к сожалению, он работает только при двух условиях:
1. Свободный член равен $\pm 1$
2. Найдено решение, которое и будет единственным.

Возможно, этого будет достаточно. Я посмотрел случай $x = 6n^2 \pm 1$, $y = 2m^2 \pm 1$. Если нигде не ошибся, там все уравнения решаются просто (уравнения вида $x^4 - 2^a3^by^4 = 1$ решаются бесконечным спуском).

 Профиль  
                  
 
 Re: Диофантово уравнение вида a n^4 +/- b n^2 = c m^4 +/- d m^2
Сообщение29.06.2022, 18:46 
Аватара пользователя


11/12/16
13850
уездный город Н
mathematician123
Некоторые комментарии
1.
mathematician123 в сообщении #1558773 писал(а):
Тогда $ad^2 - bc^2 = -108$. Это приводит к уравениям $a^4 - 54b^4 = z$, $z \mid 108$.

Тут "перегружены идентификаторы" $a$ и $b$. ИМХО, вместо $a^4 - 54b^4 = z$ лучше использовать, как ранее, $m_1^4 - 54n_1^4 = z$

2. Сделал таблицу для наглядности (кликабельно):
Изображение
Раскраска:
а) светло красный - исключено "столбцами"
б) светло жёлтый - исключено через рассмотрение отдельных уравнений
в) светло зеленый - исключено через рассмотрение уравнений Туэ (там весь квадрант исключается)

3. В Теореме 1.1. у Беннета речь о не более чем одном решении уравнения $|a x^n - b y^n| = 1$. Это означает, в частности, что наличие решения $(1,1)$ для $3x^4 - 2y^4 = 1$
а) не только исключает другие решения для $3x^4 - 2y^4 = 1$
б) но и исключает наличие решений для $3x^4 - 2y^4 = -1$

Это можно использовать в правом нижнем квадранте таблицы, например.

4. С другой стороны, в Теореме 1.1. у Беннета речь о положительных целых решениях. В частности, для уравнения вида $|a x^n - y^n| = 1$ есть тривиальное решение $(0,1)$, но оно не попадает под условия Теоремы 1.1 :-(

 Профиль  
                  
 
 Re: Диофантово уравнение вида a n^4 +/- b n^2 = c m^4 +/- d m^2
Сообщение29.06.2022, 21:49 


21/04/22
356
Рассмотрим случай $x = 6n^2 \pm 1$, $y = 2m^2 \pm 1$. Тогда $27n^4 - 2m^4 = \pm 9n^2 \pm 2m^2$, $ad^2 - bc^2 = -54$. Получаем уравнения $2m_1^4 - 27n_1^4 = z$, $z \mid 54$. Если $z$ делится на 2, то $z \equiv 2 \pmod{4}$. Если $z$ делится на 3, то $z$ делится на 27. Тогда получаем, что $z \in \{ \pm 1, \pm 2, \pm 27, \pm 54\} $. Так как $2m_1^4 - 27n_1^4 \bmod 16 \in \{ 0, 2, 5, 7\} $, то множество возможных значений $z$ сокращается: $z \in \{ 2,  -27 \} $. Отсюда следует $2m_1^4 - 27n_1^4 = 2$ или $2m_1^4 - 27n_1^4 = -27$. После замен $n_1 = 2n_2$ или $m_1 = 3m_2$ получаем уравнения $m_1^4 - 216n_2^4 = 1$ и $6m_2^4 - n_1^4 = -1$, которые решаются методом бесконечного спуска.

-- 29.06.2022, 21:55 --

EUgeneUS в сообщении #1558844 писал(а):
Раскраска:
а) светло красный - исключено "столбцами"
б) светло жёлтый - исключено через рассмотрение отдельных уравнений
в) светло зеленый - исключено через рассмотрение уравнений Туэ (там весь квадрант исключается)


Пункты а) и б) не исключают ни одного блока из четырёх уравнений. Скорее всего, через пункт в) можно будет исключить все уравнения, и исключения через пункты а) и б) не понадобятся. Как минимум, два блока уже удалось исключить.

-- 29.06.2022, 22:31 --

mathematician123 в сообщении #1558844 писал(а):
Как минимум, два блока уже удалось исключить.

Посмотрел два оставшихся блока. Их тоже можно исключить. Решение там аналогичное. Получается, что все 16 уравнений удалось решить. В решении использовались следующие методы:
1) Сведение исходных уравнений к уравнениям Туэ четвёртой степени. В пунктах 2-4 изложены методы решения этих уравнений Туэ.
2) Анализ делимости на степени 2 и 3.
3) Решение уравнений вида $x^4 - 2^u3^vy^4 = 1$ методом бесконечного спуска.
4) Отсутствие решений уравнения $3x^4 - 2y^4 = 1$ при $x > 1$. Это самое сложное уравнение. Отсутствие его решений следует из теоремы 1.1 статьи Bennett.

 Профиль  
                  
 
 Re: Диофантово уравнение вида a n^4 +/- b n^2 = c m^4 +/- d m^2
Сообщение30.06.2022, 09:25 
Аватара пользователя


11/12/16
13850
уездный город Н
mathematician123 в сообщении #1558844 писал(а):
Посмотрел два оставшихся блока. Их тоже можно исключить. Решение там аналогичное. Получается, что все 16 уравнений удалось решить

Бинго! :appl:

(Оффтоп)

Кстати, "Бинго!" кричат, когда карточка в лото полностью заполнена :mrgreen:


1. Хорошо бы для полноты рассмотреть найденные решения ($(1,1)$ и $(3,1)$ тоже находилось) и показать, что они не подходят. Но там ничего сложного, просто нужно не забыть при оформлении.
2. Также при оформлении хорошо бы сделать переобозначение: вспомогательные числа $m,n$ обозначить $m,l$. Чтобы $n$ не путалось с обозначением места в цепочке.
3. На выходных постараюсь выбрать время для оформления в нашем проекте в Papeeria первой части (до вывода уравнений 4-й степени включительно). Думаю, разбивать на два файла - смысла нет.

-- 30.06.2022, 09:27 --

mathematician123 в сообщении #1558844 писал(а):
3) Решение уравнений вида $x^4 - 2^u 3^v y^4 = 1$ методом бесконечного спуска.


Можете описать этот метод несколько подробнее? Что-то не соображу в очередной раз :roll:

 Профиль  
                  
 
 Re: Диофантово уравнение вида a n^4 +/- b n^2 = c m^4 +/- d m^2
Сообщение30.06.2022, 10:46 


21/04/22
356
EUgeneUS в сообщении #1558890 писал(а):
Можете описать этот метод несколько подробнее? Что-то не соображу в очередной раз :roll:

Например, возьмём уравнение $x^4-24y^4 = 1$. Преобразуем: $(x^2-1)(x^2+1) = 6y^4$. Так как $x^2+1$ не может делится на 3 и 4, то $x^2-1 = 48x_1^4$, $x^2+1 = 2x_2^4$. Откуда $x_2^4 - 24x_1^4 = 1$. Аналочино получаем, что $x_2^2-1 = 12x_3^4$ и $x_2^2+1 = 2x_4^4$. Откуда $x_4^4 - 6x_3^4 = 1$. И получается бесконечный спуск.

 Профиль  
                  
 
 Re: Диофантово уравнение вида a n^4 +/- b n^2 = c m^4 +/- d m^2
Сообщение30.06.2022, 11:37 
Аватара пользователя


11/12/16
13850
уездный город Н
mathematician123
Спасибо!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 36 ]  На страницу Пред.  1, 2, 3

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_2000


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group