2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Поле внутри полого шара
Сообщение26.02.2022, 11:13 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
Добрый день!

Задача: Внутри равномерно заряженного шара имеется сферическая полость, центр которой смещён относительно центра шара. Найти напряжённость эл. поля внутри полости.

Очевидно решение:
Считаем, что шар не имеет полостей. Находим напряжённость от неполого шара. Помещаем на место полости шарик с противоположным зарядом. Находим напряжённость от этого шарика. Складываем векторно напряжённости.
Наложение одинаковых разноимённых зарядов равносильно их отсутствию в области полости.

Но не получается понять, как решение выше соотносится со следующим "решением" через теорему Гаусса:
В полости изображаем сферу радиусом меньше радиуса полости, центры сферы и полости совпадают. Внутри сферы нет зарядов, т.к. их нет нигде в полости. Следовательно, поток вектора напряжённости через эту сферу равен нулю. Следовательно, вектор напряжённости на поверхности сферы равен нулю. Берём различные радиусы сферы и доказываем, что везде в полости напряжённость равна нулю.

Такое чувство, что упускаю что-то очевидное, но не понимаю что...

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение26.02.2022, 11:19 


17/10/16
5065
Atom001
А почему же вектор напряженности на поверхности мысленной сферы равен нулю, если поток через сферу равен нулю? Из второго первое не следует. Скажем, сфера в равномерном поле: поток через сферу нулевой, вектор напряженности - нигде на поверхности не нулевой.

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение26.02.2022, 11:25 
Заслуженный участник


18/09/21
1768
Atom001 в сообщении #1549579 писал(а):
поток вектора напряжённости через эту сферу равен нулю. Следовательно, вектор напряжённости на поверхности сферы равен нулю
Нет, не следует.

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение26.02.2022, 11:59 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
Конечно же. Спасибо!

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение26.02.2022, 13:05 
Аватара пользователя


11/12/16
14255
уездный город Н
Atom001 в сообщении #1549579 писал(а):
поток вектора напряжённости через эту сферу равен нулю. Следовательно, вектор напряжённости на поверхности сферы равен нулю.


Это "следовательно" работает в случае совпадения центров заряженного шара и сферической полости, по соображениям симметрии.
При смещенном центре симметрия пропадает, а следовательно пропадает "следовательно".

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение26.02.2022, 13:48 
Заслуженный участник
Аватара пользователя


30/01/09
7156
Atom001 в сообщении #1549579 писал(а):
Очевидно решение:
Считаем, что шар не имеет полостей. Находим напряжённость от неполого шара. Помещаем на место полости шарик с противоположным зарядом. Находим напряжённость от этого шарика. Складываем векторно напряжённости.
Наложение одинаковых разноимённых зарядов равносильно их отсутствию в области полости.

Вы правильно начали рассуждать. А вот в последнем предложении есть неточность. Накладывать надо не заряды, а напряжённости. И они друг друга не компенсируют.

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение26.02.2022, 16:50 
Аватара пользователя


11/12/16
14255
уездный город Н
мат-ламер
Всё правильно ТС написал.
1. Равномерно заряженный шар с полостью есть суперпозиция равномерно заряженного шара без полости и малого шара с плотностью заряда обратного знака на месте полости.
2. А далее ТС ищет напряженность, опять как суперпозицию напряженностей от двух заряженных шаров.

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение26.02.2022, 18:16 
Заслуженный участник
Аватара пользователя


30/01/09
7156
EUgeneUS в сообщении #1549602 писал(а):
мат-ламер
Всё правильно ТС написал.

Извиняюсь. Невнимательно прочитал. Там произошёл возврат мысли к предыдущему. Я, когда читал, думал, что этот момент уже пройден.

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение27.02.2022, 19:30 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
А правильно ли я понимаю, что если вместо "равномерно заряженный шар" было бы "заряженный металлический шар" в первом сообщении, то где бы полость не находилась, в ней во всех точках вектор напряжённости был бы равен нулю? Так как в проводнике избыточный заряд распределяется по внешней поверхности, тогда шар можно заменить заряженной сферой, а внутри неё поля нет.

-- 28.02.2022, 00:45 --

И ещё вопрос. Задумался и не могу понять на качественном уровне.
Пусть есть металлическое тело произвольной формы, имеющее внутри полость также произвольной формы. Сообщаем телу отрицательный заряд. Избыточные электроны (зелёные на картинке) разлетятся к внешней границе тела. В толще тела есть положительные ионы (красные) и электронный газ "собственных" электронов (которые были в теле до сообщения ему избыточного заряда) (синие). Электронный газ нейтрализуется положительными ионами электрически. А вот заряд избыточных электронов у поверхности нейтрализовать нечем. Значит, эти заряды создают поле и в толще проводника, и в полости, т.к. форма тела произвольная, а не сферическая и взаимоуничтожение векторов напряжённости в силу симметрии (как в сфере) уже не работает.

Не уверен насчёт поля в полости в таком случае, но в толще проводника же точно поля быть не должно. Укажите, пожалуйста, на ошибки в рассуждении.

Изображение

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение28.02.2022, 00:49 


17/10/16
5065
Atom001
Есть интуитивная аналогия. Поток электрического поля - поток тепла. Потенциал - температура. Заряд - источник тепла. Электрический проводник - проводник тепла с бесконечно высокой теплопроводностью (скажем, тот же металл). Вакуум - проводник тепла с конечной теплопроводностью (скажем, воздух).
Тогда задача о произвольной полости в проводящей массе звучит так. Дана масса нагретого металла с произвольной замкнутой полостью внутри. Т.к. металл - это очень хороший проводник тепла, и окружен плохим проводником тепла, он имеет одинаковую температуру во всех своих точках (эквипотенциален в толще и по поверхности). Стенки его внутренней полости во всех точках имеют одну и ту же температуру. Спрашивается, будет ли поток тепла внутри полости? Очевидно, нет. Там всюду одна и та же температура (потенциал). А вот с наружной поверхности проводника поток тепла в воздух будет, т.к. на бесконечности у воздуха нулевая температура (потенциал на бесконечности равен нулю).

Избыточные электроны хитро разлетаются к поверхности проводника произвольной формы: их плотность на разных участках поверхности разная. Это тоже из тепловой аналогии можно понять (теплопоток с единицы поверхности (пропорциональный поверхностной плотности заряда) тела сложной формы разный в разных местах, даже если поверхность нагрета до одной температуры). Это автоматически компенсирует несферичность полости и поля внутри нее все равно нет.

Этим, кстати, отличается поле заряженного непроводящего тела (аналогичного полю гравитации массивного тела) от поля заряженного проводящего тела. В первых двух случаях поля внутри полости нет только для сферически симметричного распределения заряда/плотности массы. А во втором случае - для произвольной формы полости и тела, т.к. заряды тут имеют возможность перетекать и распределяться с переменной плотностью (а в первом случае - не могут).

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение01.03.2022, 23:07 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
sergey zhukov
Спасибо, аналогия реально полезна.

 Профиль  
                  
 
 Re: Поле внутри полого шара
Сообщение02.03.2022, 00:43 


17/10/16
5065
Atom001
Эта аналогия справедлива для электростатики. Есть разные не простые задачи. Например, нахождение распределения плотности заряда по поверхности проводника сложной формы с заданным потенциалом $\varphi$ (или зарядом $q$). На языке этой аналогии это значит найти плотность потока тепла с поверхности тела в каждой точке его поверхности, при условии, что тело погружено в воздух с температурой ноль градусов и само имеет температуру $\varphi$ по всей поверхности (или при условии, что полный поток тепла со всего тела равен $q$). То же справедливо и для нескольких находящихся рядом проводников под разными потенциалами и т.д.
Например, можно лучше понять, почему плотность заряда на острие стремится к бесконечности, а плотность заряда внутри трещины (как бы острие "наоборот") - к нулю.
Задача стационарного теплообмена в этих случаях, конечно, математически такая же сложная, но интуитивно более понятная.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group