Разбиение - это не просто слово, нужно его свойства доказывать
Нужно, конечно, но я ожидаю, что любой студент, узнав определение, сможет доказать их самостоятельно. Но ладно, это неважно, я понял, о чем речь, просто не ожидал, что это аж заслуживающей упоминания и вызывающей какие-то сложности теоремой можно счесть.
Потом надо говорить честно каждый раз, что мы имеем дело с факторпространством, а не пространством в обычном смысле.
Можно рассматривать
как факторпространство пространства квадратично-интегрируемых функций, можно как обычное пространство, элементами которого являются классы, а про само пространство функций особо не думать, ничего важного от этого не изменится.
А где всё-таки нужна аксиома выбора? Для построения множества Витали она, конечно, нужна, но какие из стандартных рассуждений зависят от существования неизмеримых множеств?